BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 20435468)

  • 1. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.
    Gan S; Ng HK; Ooi CW; Motala NO; Ismail MA
    Bioresour Technol; 2010 Oct; 101(19):7338-43. PubMed ID: 20435468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production.
    Zhang J; Jiang L
    Bioresour Technol; 2008 Dec; 99(18):8995-8. PubMed ID: 18562195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids.
    Berchmans HJ; Hirata S
    Bioresour Technol; 2008 Apr; 99(6):1716-21. PubMed ID: 17531473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK; Lee KT; Mohamed AR
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts.
    Chung KH; Chang DR; Park BG
    Bioresour Technol; 2008 Nov; 99(16):7438-43. PubMed ID: 18387298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel.
    Thanh le T; Okitsu K; Sadanaga Y; Takenaka N; Maeda Y; Bandow H
    Bioresour Technol; 2010 Jul; 101(14):5394-401. PubMed ID: 20219362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology.
    Ghadge SV; Raheman H
    Bioresour Technol; 2006 Feb; 97(3):379-84. PubMed ID: 15908200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid.
    Cao F; Chen Y; Zhai F; Li J; Wang J; Wang X; Wang S; Zhu W
    Biotechnol Bioeng; 2008 Sep; 101(1):93-100. PubMed ID: 18646228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.
    Srilatha K; Prabhavathi Devi BL; Lingaiah N; Prasad RB; Sai Prasad PS
    Bioresour Technol; 2012 Sep; 119():306-11. PubMed ID: 22750497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.
    Wang K; Zhang X; Zhang J; Zhang Z; Fan C; Han P
    J Mol Graph Model; 2016 May; 66():41-6. PubMed ID: 27023919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production.
    Kostić MD; Veličković AV; Joković NM; Stamenković OS; Veljković VB
    Waste Manag; 2016 Feb; 48():619-629. PubMed ID: 26706748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.
    Zhang H; Ding J; Zhao Z
    Bioresour Technol; 2012 Nov; 123():72-7. PubMed ID: 22940301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esterification of acidified oil with methanol by SPES/PES catalytic membrane.
    Shi W; He B; Li J
    Bioresour Technol; 2011 May; 102(9):5389-93. PubMed ID: 20951577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn(1.2)H(0.6)PW(12)O(40) Nanotubes with double acid sites as heterogeneous catalysts for the production of biodiesel from waste cooking oil.
    Li J; Wang X; Zhu W; Cao F
    ChemSusChem; 2009; 2(2):177-83. PubMed ID: 19191363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in glyceride composition of olive pomace oil during enzymatic esterification.
    Gögüş F; Fadiloglu S; Ciftçi ON
    Nahrung; 2004 Jun; 48(3):205-8. PubMed ID: 15285112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and characterization of biodiesel from tung oil.
    Park JY; Kim DK; Wang ZM; Lu P; Park SC; Lee JS
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):109-17. PubMed ID: 18418744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.
    Olutoye MA; Hameed BH
    Bioresour Technol; 2011 Feb; 102(4):3819-26. PubMed ID: 21183335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process.
    Thanh le T; Okitsu K; Sadanaga Y; Takenaka N; Maeda Y; Bandow H
    Bioresour Technol; 2010 Jan; 101(2):639-45. PubMed ID: 19736002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.
    Xie W; Yang D
    Bioresour Technol; 2011 Oct; 102(20):9818-22. PubMed ID: 21871795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.
    Li M; Zheng Y; Chen Y; Zhu X
    Bioresour Technol; 2014 Feb; 154():345-8. PubMed ID: 24405650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.