These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20435501)

  • 1. Validation of statistical shape model based reconstruction of the proximal femur--A morphology study.
    Schumann S; Tannast M; Nolte LP; Zheng G
    Med Eng Phys; 2010 Jul; 32(6):638-44. PubMed ID: 20435501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: a validation study.
    Zheng G; Schumann S
    Med Phys; 2009 Apr; 36(4):1155-66. PubMed ID: 19472621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-D reconstruction of a surface model of the proximal femur from digital biplanar radiographs.
    Zheng G; Schumann S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():66-9. PubMed ID: 19162595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of PCA-based finite element modelling of the human femur.
    Grassi L; Schileo E; Boichon C; Viceconti M; Taddei F
    Med Eng Phys; 2014 Oct; 36(10):1246-52. PubMed ID: 25128959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated method for computing the morphological and clinical parameters of the proximal femur using heuristic modeling techniques.
    Cerveri P; Marchente M; Bartels W; Corten K; Simon JP; Manzotti A
    Ann Biomed Eng; 2010 May; 38(5):1752-66. PubMed ID: 20177779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to reconstruct patient-specific proximal femur surface models from planar pre-operative radiographs.
    Galibarov PE; Prendergast PJ; Lennon AB
    Med Eng Phys; 2010 Dec; 32(10):1180-8. PubMed ID: 20933453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of femur reconstruction from sparse geometric data using a statistical shape model.
    Zhang J; Besier TF
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):566-576. PubMed ID: 27998170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical shape model-based femur kinematics from biplane fluoroscopy.
    Baka N; de Bruijne M; van Walsum T; Kaptein BL; Giphart JE; Schaap M; Niessen WJ; Lelieveldt BP
    IEEE Trans Med Imaging; 2012 Aug; 31(8):1573-83. PubMed ID: 22547454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a generic 3D model of the distal femur.
    Schmutz B; Reynolds KJ; Slavotinek JP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):305-12. PubMed ID: 17132616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan.
    Soodmand E; Kluess D; Varady PA; Cichon R; Schwarze M; Gehweiler D; Niemeyer F; Pahr D; Woiczinski M
    Biomed Eng Online; 2018 Mar; 17(1):29. PubMed ID: 29495963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.
    Barratt DC; Chan CS; Edwards PJ; Penney GP; Slomczykowski M; Carter TJ; Hawkes DJ
    Med Image Anal; 2008 Jun; 12(3):358-74. PubMed ID: 18313973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.
    Fritscher K; Grunerbl A; Hanni M; Suhm N; Hengg C; Schubert R
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1560-75. PubMed ID: 19520636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of free-form deformation algorithm in fast three-dimensional bone reconstruction].
    Zeng X; Zhou H; Wang C; Wang D; Chen G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):1121-6. PubMed ID: 25764734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femur finite element model instantiation from partial anatomies using statistical shape and appearance models.
    Nolte D; Bull AMJ
    Med Eng Phys; 2019 May; 67():55-65. PubMed ID: 30902520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy analysis of three-dimensional bone surface models of the forearm constructed from multidetector computed tomography data.
    Oka K; Murase T; Moritomo H; Goto A; Sugamoto K; Yoshikawa H
    Int J Med Robot; 2009 Dec; 5(4):452-7. PubMed ID: 19722285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive statistical models of baseline variations in 3-D femoral cortex morphology.
    Zhang J; Hislop-Jambrich J; Besier TF
    Med Eng Phys; 2016 May; 38(5):450-7. PubMed ID: 26972387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy evaluation of surface-based registration methods in a computer navigation system for hip surgery performed through a posterolateral approach.
    Sugano N; Sasama T; Sato Y; Nakajima Y; Nishii T; Yonenobu K; Tamura S; Ochi T
    Comput Aided Surg; 2001; 6(4):195-203. PubMed ID: 11835614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of 3D shape, internal density and mechanics of proximal femur by combining bone mineral density images with shape and density templates.
    Väänänen SP; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2012 Jul; 11(6):791-800. PubMed ID: 21986796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.