BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20435594)

  • 1. Large-scale binding of α-crystallin to cell membranes of aged normal human lenses: a phenomenon that can be induced by mild thermal stress.
    Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5145-52. PubMed ID: 20435594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the α-crystallin cell membrane conjunction.
    Su SP; McArthur JD; Friedrich MG; Truscott RJ; Aquilina JA
    Mol Vis; 2011; 17():2798-807. PubMed ID: 22219626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane association of proteins in the aging human lens: profound changes take place in the fifth decade of life.
    Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4786-93. PubMed ID: 19458333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α- and β-crystallins modulate the head group order of human lens membranes during aging.
    Zhu X; Gaus K; Lu Y; Magenau A; Truscott RJ; Mitchell TW
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5162-7. PubMed ID: 20484582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.
    Raguz M; Mainali L; O'Brien WJ; Subczynski WK
    Exp Eye Res; 2015 Mar; 132():78-90. PubMed ID: 25617680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes.
    Raguz M; Mainali L; O'Brien WJ; Subczynski WK
    Exp Eye Res; 2015 Nov; 140():179-186. PubMed ID: 26384651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alpha-Crystallin binding in vitro to lipids from clear human lenses.
    Grami V; Marrero Y; Huang L; Tang D; Yappert MC; Borchman D
    Exp Eye Res; 2005 Aug; 81(2):138-46. PubMed ID: 15967437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S; Liu P; Zhang H; Li Z; Song Z; Zhang L; Chen S
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4182-91. PubMed ID: 21436267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal Study of Age-Related Cataract Using Dynamic Light Scattering: Loss of α-Crystallin Leads to Nuclear Cataract Development.
    Datiles MB; Ansari RR; Yoshida J; Brown H; Zambrano AI; Tian J; Vitale S; Zigler JS; Ferris FL; West SK; Stark WJ
    Ophthalmology; 2016 Feb; 123(2):248-254. PubMed ID: 26545319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry.
    Grey AC; Schey KL
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4319-29. PubMed ID: 19387068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers.
    Rujoi M; Jin J; Borchman D; Tang D; Yappert MC
    Invest Ophthalmol Vis Sci; 2003 Apr; 44(4):1634-42. PubMed ID: 12657603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P
    Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.