BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20435888)

  • 1. Each conserved active site tyr in the three subunits of human isocitrate dehydrogenase has a different function.
    Dange M; Colman RF
    J Biol Chem; 2010 Jul; 285(27):20520-5. PubMed ID: 20435888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation by mutagenesis of the importance of 3 arginines in alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase.
    Soundar S; Park JH; Huh TL; Colman RF
    J Biol Chem; 2003 Dec; 278(52):52146-53. PubMed ID: 14555658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of alpha-Asp181, beta-Asp192, and gamma-Asp190 in the distinctive subunits of human NAD-specific isocitrate dehydrogenase.
    Bzymek KP; Colman RF
    Biochemistry; 2007 May; 46(18):5391-7. PubMed ID: 17432878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit interactions of yeast NAD+-specific isocitrate dehydrogenase.
    Panisko EA; McAlister-Henn L
    J Biol Chem; 2001 Jan; 276(2):1204-10. PubMed ID: 11042198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologous binding sites in yeast isocitrate dehydrogenase for cofactor (NAD+) and allosteric activator (AMP).
    Lin AP; McAlister-Henn L
    J Biol Chem; 2003 Apr; 278(15):12864-72. PubMed ID: 12562755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Mn2+-binding aspartates from alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase.
    Soundar S; O'Hagan M; Fomulu KS; Colman RF
    J Biol Chem; 2006 Jul; 281(30):21073-21081. PubMed ID: 16737955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basis for half-site ligand binding in yeast NAD(+)-specific isocitrate dehydrogenase.
    Lin AP; McAlister-Henn L
    Biochemistry; 2011 Sep; 50(38):8241-50. PubMed ID: 21861471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism.
    Ceccarelli C; Grodsky NB; Ariyaratne N; Colman RF; Bahnson BJ
    J Biol Chem; 2002 Nov; 277(45):43454-62. PubMed ID: 12207025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants.
    Lancien M; Gadal P; Hodges M
    Plant J; 1998 Nov; 16(3):325-33. PubMed ID: 9881153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD(+)-specific isocitrate dehydrogenase.
    Lin AP; McCammon MT; McAlister-Henn L
    Biochemistry; 2001 Nov; 40(47):14291-301. PubMed ID: 11714283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102.
    Wang P; Song P; Jin M; Zhu G
    PLoS One; 2013; 8(3):e58918. PubMed ID: 23484056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the subunits and target peptides of pig heart NAD-specific isocitrate dehydrogenase modified by the affinity label 8-(4-bromo-2,3-dioxobutylthio)NAD.
    Huang YC; Kumar A; Colman RF
    Arch Biochem Biophys; 1997 Dec; 348(1):207-18. PubMed ID: 9390193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus.
    Steen IH; Lien T; Madsen MS; Birkeland NK
    Arch Microbiol; 2002 Oct; 178(4):297-300. PubMed ID: 12209263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae.
    Cupp JR; McAlister-Henn L
    J Biol Chem; 1991 Nov; 266(33):22199-205. PubMed ID: 1939242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase.
    Ma T; Peng Y; Huang W; Ding J
    Sci Rep; 2017 Jan; 7():40921. PubMed ID: 28098230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of NAD(+)-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis.
    Cupp JR; McAlister-Henn L
    Biochemistry; 1993 Sep; 32(36):9323-8. PubMed ID: 8369302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction.
    McCammon MT; McAlister-Henn L
    Arch Biochem Biophys; 2003 Nov; 419(2):222-33. PubMed ID: 14592466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a cDNA clone for human NAD(+)-specific isocitrate dehydrogenase alpha-subunit and structural comparison with its isoenzymes from different species.
    Kim YO; Oh IU; Park HS; Jeng J; Song BJ; Huh TL
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):63-8. PubMed ID: 7755589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the nicotinamide adenine dinucleotides (NAD
    Wang P; Chen X; Yang J; Pei Y; Bian M; Zhu G
    Biochimie; 2019 May; 160():148-155. PubMed ID: 30876971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.