These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20435898)

  • 1. Stimulation of -1 programmed ribosomal frameshifting by a metabolite-responsive RNA pseudoknot.
    Chou MY; Lin SC; Chang KY
    RNA; 2010 Jun; 16(6):1236-44. PubMed ID: 20435898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting.
    Chou MY; Chang KY
    Nucleic Acids Res; 2010 Mar; 38(5):1676-85. PubMed ID: 20007152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events.
    Penn WD; Harrington HR; Schlebach JP; Mukhopadhyay S
    Annu Rev Virol; 2020 Sep; 7(1):219-238. PubMed ID: 32600156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
    Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I
    Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting.
    Huang WP; Cho CP; Chang KY
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway.
    Belew AT; Meskauskas A; Musalgaonkar S; Advani VM; Sulima SO; Kasprzak WK; Shapiro BA; Dinman JD
    Nature; 2014 Aug; 512(7514):265-9. PubMed ID: 25043019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel ligands for the RNA pseudoknot that regulate -1 ribosomal frameshifting.
    Park SJ; Jung YH; Kim YG; Park HJ
    Bioorg Med Chem; 2008 Apr; 16(8):4676-84. PubMed ID: 18321712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRNA pseudoknot structures can act as ribosomal roadblocks.
    Tholstrup J; Oddershede LB; Sørensen MA
    Nucleic Acids Res; 2012 Jan; 40(1):303-13. PubMed ID: 21908395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small synthetic molecule-stabilized RNA pseudoknot as an activator for -1 ribosomal frameshifting.
    Matsumoto S; Caliskan N; Rodnina MV; Murata A; Nakatani K
    Nucleic Acids Res; 2018 Sep; 46(16):8079-8089. PubMed ID: 30085309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Premature translation termination mediated non-ER stress induced ATF6 activation by a ligand-dependent ribosomal frameshifting circuit.
    Hsu HT; Murata A; Dohno C; Nakatani K; Chang K
    Nucleic Acids Res; 2022 May; 50(9):5369-5383. PubMed ID: 35511080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses.
    Huang X; Cheng Q; Du Z
    Biomed Res Int; 2013; 2013():984028. PubMed ID: 24298557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second mammalian antizyme: conservation of programmed ribosomal frameshifting.
    Ivanov IP; Gesteland RF; Atkins JF
    Genomics; 1998 Sep; 52(2):119-29. PubMed ID: 9782076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torsional restraint: a new twist on frameshifting pseudoknots.
    Plant EP; Dinman JD
    Nucleic Acids Res; 2005; 33(6):1825-33. PubMed ID: 15800212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency.
    Kontos H; Napthine S; Brierley I
    Mol Cell Biol; 2001 Dec; 21(24):8657-70. PubMed ID: 11713298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An RNA pseudoknot stimulates HTLV-1
    Thulson E; Hartwick EW; Cooper-Sansone A; Williams MAC; Soliman ME; Robinson LK; Kieft JS; Mouzakis KD
    RNA; 2020 Apr; 26(4):512-528. PubMed ID: 31980578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting.
    Giedroc DP; Theimer CA; Nixon PL
    J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.
    Chen G; Chang KY; Chou MY; Bustamante C; Tinoco I
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12706-11. PubMed ID: 19628688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting.
    Napthine S; Liphardt J; Bloys A; Routledge S; Brierley I
    J Mol Biol; 1999 May; 288(3):305-20. PubMed ID: 10329144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.