These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 204362)

  • 1. Energy requirements for the action of staphylococcin 1580 in Staphyloccus aureus.
    Weerkamp A; Geerts W; Vogels GD
    Biochim Biophys Acta; 1978 Mar; 539(3):372-85. PubMed ID: 204362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological conditions affecting Staphylococcus aureus susceptibility to staphylococcin 1580.
    Weerkamp A; Vogels GD
    Antimicrob Agents Chemother; 1978 Feb; 13(2):146-53. PubMed ID: 25615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of staphylococcin 1580 on cells and membrane vesicles of Bacillus subtilis W23.
    Weerkamp A; Vogels GD
    Biochim Biophys Acta; 1978 Mar; 539(3):386-97. PubMed ID: 415763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy conservation in aerobically grown Staphylococcus aureus.
    Tynecka Z; Szcześniak Z; Malm A; Los R
    Res Microbiol; 1999 Oct; 150(8):555-66. PubMed ID: 10577488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional killing effect of staphylococcin 1580 and repair of sublethal injury in Staphylococcus aureus.
    Weerkamp A; Geerts W; Vogels GD
    Antimicrob Agents Chemother; 1977 Sep; 12(3):314-21. PubMed ID: 20837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of action of a Staphylococcus epidermidis bacteriocin.
    Jetten AM; Vogels GD
    Antimicrob Agents Chemother; 1972 Dec; 2(6):456-63. PubMed ID: 4274969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and mode of action of a staphylococcin-like substance active against gram-positive and gram-negative bacteria.
    Kader OA; Sahl HG; Brandis H
    J Gen Microbiol; 1984 Sep; 130(9):2291-300. PubMed ID: 6389764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological activity of staphylococcin 162: bacteriocin from Staphylococcus aureus.
    Hale EM; Hinsdill RD
    Antimicrob Agents Chemother; 1975 Jan; 7(1):74-81. PubMed ID: 1137360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and ultrastructural changes in Staphylococcus aureus treated with staphylococcin 1580.
    Weerkamp A; Heinen-von Borries UT; Vogels GD
    Antonie Van Leeuwenhoek; 1978; 44(1):35-48. PubMed ID: 655698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic insensitivity to cadmium of the L-lactate oxidizing system in staphylococcoccus aureus.
    Tynecka Z; Malm A
    FEMS Microbiol Lett; 1995 Jun; 129(1):11-5. PubMed ID: 7781984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy donor-dependent effect of Cd2+ on [14C]glutamate transport in Staphylococcus aureus.
    Malm A; Tynecka Z
    Acta Biochim Pol; 1990; 37(1):117-20. PubMed ID: 1982385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmid-mediated production of staphylococcin in bacteriophage type 71 Staphylococcus aureus.
    Dajani AS; Taube Z
    Antimicrob Agents Chemother; 1974 Jun; 5(6):594-8. PubMed ID: 15825411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Staphylococcus aureus lactate dehydrogenase.
    Garrard W; Lascelles J
    J Bacteriol; 1968 Jan; 95(1):152-6. PubMed ID: 4295239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system.
    Lascelles J; Burke KA
    J Bacteriol; 1978 May; 134(2):585-9. PubMed ID: 207671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature and properties of a Staphylococcus epidermidis bacteriocin.
    Jetten AM; Vogels GD
    J Bacteriol; 1972 Oct; 112(1):243-50. PubMed ID: 5079064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the cytoplasmic redox potential in the control of fatty acid synthesis from glucose, pyruvate and lactate in white adipose tissue.
    Halperin ML; Robinson BH
    Biochem J; 1970 Jan; 116(2):235-40. PubMed ID: 4313115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glucose, pyruvate, lactate, and amino acids on muscle protein synthesis.
    Hedden MP; Buse MG
    Am J Physiol; 1982 Mar; 242(3):E184-92. PubMed ID: 7065176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures.
    Gilbert E; Tang JM; Ludvig N; Bergold PJ
    Brain Res; 2006 Oct; 1117(1):213-23. PubMed ID: 16996036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The participation of energy substrates in the control of meiotic maturation in murine oocytes.
    Downs SM; Mastropolo AM
    Dev Biol; 1994 Mar; 162(1):154-68. PubMed ID: 8125183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.