BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 2043623)

  • 1. Structure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: an analogue of the intermediate on the reaction pathway.
    Davenport RC; Bash PA; Seaton BA; Karplus M; Petsko GA; Ringe D
    Biochemistry; 1991 Jun; 30(24):5821-6. PubMed ID: 2043623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase.
    Harris TK; Abeygunawardana C; Mildvan AS
    Biochemistry; 1997 Dec; 36(48):14661-75. PubMed ID: 9398185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic implications of methylglyoxal synthase complexed with phosphoglycolohydroxamic acid as observed by X-ray crystallography and NMR spectroscopy.
    Marks GT; Harris TK; Massiah MA; Mildvan AS; Harrison DH
    Biochemistry; 2001 Jun; 40(23):6805-18. PubMed ID: 11389594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of recombinant chicken triosephosphate isomerase-phosphoglycolohydroxamate complex at 1.8-A resolution.
    Zhang Z; Sugio S; Komives EA; Liu KD; Knowles JR; Petsko GA; Ringe D
    Biochemistry; 1994 Mar; 33(10):2830-7. PubMed ID: 8130195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site properties of monomeric triosephosphate isomerase (monoTIM) as deduced from mutational and structural studies.
    Schliebs W; Thanki N; Eritja R; Wierenga R
    Protein Sci; 1996 Feb; 5(2):229-39. PubMed ID: 8745400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer in the mechanism of triosephosphate isomerase.
    Harris TK; Cole RN; Comer FI; Mildvan AS
    Biochemistry; 1998 Nov; 37(47):16828-38. PubMed ID: 9843453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism.
    Alahuhta M; Wierenga RK
    Proteins; 2010 Jun; 78(8):1878-88. PubMed ID: 20235230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the mutant yeast triosephosphate isomerase in which the catalytic base glutamic acid 165 is changed to aspartic acid.
    Joseph-McCarthy D; Rost LE; Komives EA; Petsko GA
    Biochemistry; 1994 Mar; 33(10):2824-9. PubMed ID: 7907502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation and analysis of the reaction pathway of triosephosphate isomerase.
    Bash PA; Field MJ; Davenport RC; Petsko GA; Ringe D; Karplus M
    Biochemistry; 1991 Jun; 30(24):5826-32. PubMed ID: 2043624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach.
    Go MK; Koudelka A; Amyes TL; Richard JP
    Biochemistry; 2010 Jun; 49(25):5377-89. PubMed ID: 20481463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral imidazole is the electrophile in the reaction catalyzed by triosephosphate isomerase: structural origins and catalytic implications.
    Lodi PJ; Knowles JR
    Biochemistry; 1991 Jul; 30(28):6948-56. PubMed ID: 2069953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the "open" and "closed" state of trypanosomal triosephosphate isomerase, as observed in a new crystal form: implications for the reaction mechanism.
    Noble ME; Zeelen JP; Wierenga RK
    Proteins; 1993 Aug; 16(4):311-26. PubMed ID: 8356028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the K12M/G15A triosephosphate isomerase double mutant and electrostatic analysis of the active site.
    Joseph-McCarthy D; Lolis E; Komives EA; Petsko GA
    Biochemistry; 1994 Mar; 33(10):2815-23. PubMed ID: 8130194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmental movement: definition of the structural requirements for loop closure in catalysis by triosephosphate isomerase.
    Sampson NS; Knowles JR
    Biochemistry; 1992 Sep; 31(36):8482-7. PubMed ID: 1390632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow proton transfer from the hydrogen-labelled carboxylic acid side chain (Glu-165) of triosephosphate isomerase to imidazole buffer in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Org Biomol Chem; 2008 Jan; 6(2):391-6. PubMed ID: 18175010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase.
    Richard JP
    Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism.
    Nickbarg EB; Davenport RC; Petsko GA; Knowles JR
    Biochemistry; 1988 Aug; 27(16):5948-60. PubMed ID: 2847777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active-Site Glu165 Activation in Triosephosphate Isomerase and Its Deprotonation Kinetics.
    Deng H; Dyer RB; Callender R
    J Phys Chem B; 2019 May; 123(19):4230-4241. PubMed ID: 31013084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference FTIR Studies of Substrate Distribution in Triosephosphate Isomerase.
    Deng H; Vedad J; Desamero RZB; Callender R
    J Phys Chem B; 2017 Nov; 121(43):10036-10045. PubMed ID: 28990791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophilic catalysis in triosephosphate isomerase: the role of histidine-95.
    Komives EA; Chang LC; Lolis E; Tilton RF; Petsko GA; Knowles JR
    Biochemistry; 1991 Mar; 30(12):3011-9. PubMed ID: 2007138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.