These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20436465)

  • 21. High-Throughput Estimation of Phonon Thermal Conductivity from First-Principles Calculations of Elasticity.
    Yan S; Wang Y; Tao F; Ren J
    J Phys Chem A; 2022 Nov; 126(46):8771-8780. PubMed ID: 36351268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport.
    Hippalgaonkar K; Huang B; Chen R; Sawyer K; Ercius P; Majumdar A
    Nano Lett; 2010 Nov; 10(11):4341-8. PubMed ID: 20939585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.
    Xiong S; Sääskilahti K; Kosevich YA; Han H; Donadio D; Volz S
    Phys Rev Lett; 2016 Jul; 117(2):025503. PubMed ID: 27447516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonmonotonic Diameter Dependence of Thermal Conductivity of Extremely Thin Si Nanowires: Competition between Hydrodynamic Phonon Flow and Boundary Scattering.
    Zhou Y; Zhang X; Hu M
    Nano Lett; 2017 Feb; 17(2):1269-1276. PubMed ID: 28128960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal.
    Wang X; Kaviany M; Huang B
    Nanoscale; 2017 Nov; 9(45):18022-18031. PubMed ID: 29131229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers.
    Ferrando-Villalba P; Lopeandia AF; Abad L; Llobet J; Molina-Ruiz M; Garcia G; Gerbolès M; Alvarez FX; Goñi AR; Muñoz-Pascual FJ; Rodríguez-Viejo J
    Nanotechnology; 2014 May; 25(18):185402. PubMed ID: 24737220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning thermal transport in Si nanowires by isotope engineering.
    Royo M; Rurali R
    Phys Chem Chem Phys; 2016 Sep; 18(37):26262-26267. PubMed ID: 27722390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diameter dependent thermoelectric properties of individual SnTe nanowires.
    Xu EZ; Li Z; Martinez JA; Sinitsyn N; Htoon H; Li N; Swartzentruber B; Hollingsworth JA; Wang J; Zhang SX
    Nanoscale; 2015 Feb; 7(7):2869-76. PubMed ID: 25623253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phonon-engineered extreme thermal conductivity materials.
    Qian X; Zhou J; Chen G
    Nat Mater; 2021 Sep; 20(9):1188-1202. PubMed ID: 33686278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.
    Jiang JW; Yang N; Wang BS; Rabczuk T
    Nano Lett; 2013 Apr; 13(4):1670-4. PubMed ID: 23517486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal Conductivity Reduction in a Silicon Thin Film with Nanocones.
    Huang X; Gluchko S; Anufriev R; Volz S; Nomura M
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34394-34398. PubMed ID: 31490655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-channel model for ultralow thermal conductivity of crystalline Tl
    Mukhopadhyay S; Parker DS; Sales BC; Puretzky AA; McGuire MA; Lindsay L
    Science; 2018 Jun; 360(6396):1455-1458. PubMed ID: 29954978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires.
    Hsiao TK; Chang HK; Liou SC; Chu MW; Lee SC; Chang CW
    Nat Nanotechnol; 2013 Jul; 8(7):534-8. PubMed ID: 23812186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High thermal conductivity of chain-oriented amorphous polythiophene.
    Singh V; Bougher TL; Weathers A; Cai Y; Bi K; Pettes MT; McMenamin SA; Lv W; Resler DP; Gattuso TR; Altman DH; Sandhage KH; Shi L; Henry A; Cola BA
    Nat Nanotechnol; 2014 May; 9(5):384-90. PubMed ID: 24681778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.
    Lv W; Henry A
    Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Morphology and Crystal Structure on the Thermal Conductivity of Titania Nanotubes.
    Ali S; Orell O; Kanerva M; Hannula SP
    Nanoscale Res Lett; 2018 Jul; 13(1):212. PubMed ID: 30014264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.