These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 2043659)

  • 21. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A contradiction between in vivo and in vitro activities of normal and variant glucose 6-phosphate dehydrogenase.
    Yoshida A
    Hemoglobin; 1980; 4(5-6):769-80. PubMed ID: 7440222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preferential utilization of NADPH as the endogenous electron donor for NAD(P)H:quinone oxidoreductase 1 (NQO1) in intact pulmonary arterial endothelial cells.
    Bongard RD; Lindemer BJ; Krenz GS; Merker MP
    Free Radic Biol Med; 2009 Jan; 46(1):25-32. PubMed ID: 18848878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of haemolysis on the hexose monophosphate pathway in normal and in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Galiano S; Mareni C; Gaetani GF
    Biochim Biophys Acta; 1978 Jan; 501(1):1-9. PubMed ID: 23153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. II. Experiments with glucose-6-phosphate dehydrogenase-deficient erythrocytes].
    Brand K; Arese P; Rivera M
    Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):509-14. PubMed ID: 4392679
    [No Abstract]   [Full Text] [Related]  

  • 26. Oxidative metabolism of glucose, fructose and galactose by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates.
    Sturman JA
    Clin Chim Acta; 1969 Oct; 26(1):135-40. PubMed ID: 4391029
    [No Abstract]   [Full Text] [Related]  

  • 27. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A general colorimetric procedure using oxidized chlorpromazine hydrochloride for the estimation of enzymes dependent on NADH/NAD+ and NADPH/NADP+ systems.
    Lee KT; Tan IK
    Mikrochim Acta; 1975; (2 Pt 2):139-50. PubMed ID: 9121387
    [No Abstract]   [Full Text] [Related]  

  • 29.
    White K; Kim MJ; Ding D; Han C; Park HJ; Meneses Z; Tanokura M; Linser P; Salvi R; Someya S
    J Neurosci; 2017 Jun; 37(23):5770-5781. PubMed ID: 28473643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [CHOLEGLOBIN FORMATION IN THE ERYTHROCYTES OF PATIENTS WITH FAVISM (WITH GRAVE DEFICIENCY OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE). INFLUENCE OF THE AVAILABILITY OF GLUCOSE-6-PHOSPHATE].
    VECCHIO F; RIGILLO N; MELA C
    Boll Soc Ital Biol Sper; 1963 Oct; 39():1080-3. PubMed ID: 14116473
    [No Abstract]   [Full Text] [Related]  

  • 31. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():43-51. PubMed ID: 28108222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Some mechanisms of carbohydrate metabolism regulation with NADP participation].
    Golovats'kiĭ ID; Kolotnits'kiĭ AG; Krasnevich AIa
    Ukr Biokhim Zh; 1977; 49(3):35-8. PubMed ID: 18829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of glucose-6-phosphate dehydrogenase. I. Intact red cells.
    Kirkman HN; Wilson WG; Clemons EH
    J Lab Clin Med; 1980 Jun; 95(6):877-87. PubMed ID: 6155419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonenzymic hydrogen transfer between reduced and oxidized pyridine nucleotides.
    Bernofsky C; Gallagher WJ
    Biochim Biophys Acta; 1981 May; 659(1):1-6. PubMed ID: 7248310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure.
    Zerez CR; Lee SJ; Tanaka KR
    Anal Biochem; 1987 Aug; 164(2):367-73. PubMed ID: 3674385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Red cell NADP+ and NADPH in glucose-6-phosphate dehydrogenase deficiency.
    Kirkman HN; Gaetani GD; Clemons EH; Mareni C
    J Clin Invest; 1975 Apr; 55(4):875-8. PubMed ID: 235564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs.
    Hohl RJ; Kennedy EJ; Frischer H
    J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose-6-phosphate dehydrogenase from a tetracycline producing strain of Streptomyces aureofaciens: some properties and regulatory aspects of the enzyme.
    Neuzil J; Novotná J; Erban V; Bĕhal V; Hostálek Z
    Biochem Int; 1988 Jul; 17(1):187-96. PubMed ID: 3142475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The potential use of xylitol in glucose-6-phosphate dehydrogenase deficiency anemia.
    Wang YM; Patterson JH; Van Eys J
    J Clin Invest; 1971 Jul; 50(7):1421-8. PubMed ID: 4397414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of ascorbic acid recycling in human erythrocytes.
    May JM; Qu Z; Morrow JD
    Biochim Biophys Acta; 2001 Oct; 1528(2-3):159-66. PubMed ID: 11687303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.