These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 2043659)

  • 41. Single extraction method for the spectrophotometric quantification of oxidized and reduced pyridine nucleotides in erythrocytes.
    Wagner TC; Scott MD
    Anal Biochem; 1994 Nov; 222(2):417-26. PubMed ID: 7864367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Detection of a new anomalous variant of glucose-6-phosphate dehydrogenase in human erythrocytes].
    Batishchev AI; Cherniak NB; Tokarev IuN
    Biull Eksp Biol Med; 1977 Dec; 84(12):728-31. PubMed ID: 23188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolism of the hexose monophosphate shunt in glucose-6-phosphate dehydrogenase deficiency and closely interrelated reactions.
    Jacobasch G; Bleiber R; Schönian G
    Haematologia (Budap); 1982 Dec; 15(4):401-7. PubMed ID: 7186479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glucose-6-phosphate dehydrogenase exerts antistress effects independently of its enzymatic activity.
    Jin X; Li X; Li L; Zhong B; Hong Y; Niu J; Li B
    J Biol Chem; 2022 Dec; 298(12):102587. PubMed ID: 36243112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pyridine nucleotides in erythrocyte metabolism.
    Gross RT; Schroeder EA; Gabrio BW
    J Clin Invest; 1966 Feb; 45(2):249-55. PubMed ID: 4379090
    [No Abstract]   [Full Text] [Related]  

  • 47. Effect of CCK-8 on pentose phosphate shunt activity, pyridine nucleotides, and glucokinase of rat islets.
    Verspohl EJ; Breuning I; Ammon HP
    Am J Physiol; 1989 Jan; 256(1 Pt 1):E68-73. PubMed ID: 2643344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inborn defects in the antioxidant systems of human red blood cells.
    van Zwieten R; Verhoeven AJ; Roos D
    Free Radic Biol Med; 2014 Feb; 67():377-86. PubMed ID: 24316370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
    Velasco-García R; González-Segura L; Muñoz-Clares RA
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):675-83. PubMed ID: 11104673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decay of a specific NADP(H)-binding protein during aging of normal and glucose 6-phosphate dehydrogenase-deficient erythrocytes.
    De Flora A; Morelli A; Benatti U; Frascio M; Gaetani GF
    FEBS Lett; 1977 Oct; 82(2):223-6. PubMed ID: 21101
    [No Abstract]   [Full Text] [Related]  

  • 51. Dependence of benzo(a)pyrene metabolism on NADPH pool in normal and glucose-6-phosphate dehydrogenase deficient human fibroblasts.
    Pascale R; Ruggiu ME; Simile MM; Daino L; Vannini G; Seddaiu MA; Satta G; Feo F
    Res Commun Chem Pathol Pharmacol; 1990 Sep; 69(3):361-4. PubMed ID: 2236903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mathematical modelling of energy and redox metabolism of G6PD-deficient erythrocytes.
    Schuster R; Jacobasch G; Holzhütter H
    Biomed Biochim Acta; 1990; 49(2-3):S160-5. PubMed ID: 2386502
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decreased erythrocyte nicotinamide adenine dinucleotide redox potential and abnormal pyridine nucleotide content in sickle cell disease.
    Zerez CR; Lachant NA; Lee SJ; Tanaka KR
    Blood; 1988 Feb; 71(2):512-5. PubMed ID: 3337912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of glucose 6-phosphate dehydrogenase (G6PD) kinetics for normal and G6PD-deficient persons and the effects of some drugs.
    Ozmen I; Ciftçi M; Küfrevioğlu OI; Curük MA
    J Enzyme Inhib Med Chem; 2004 Feb; 19(1):45-50. PubMed ID: 15202492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the phenazine methosulphate-tetrazolium salt capture reaction in NAD(P)+-dependent dehydrogenase cytochemistry. I. Localization artefacts caused by the escape of reduced co-enzyme during cytochemical reactions for NAD(P)+-dependent dehydrogenases.
    Raap AK; Van Hoof GR; Van Duijn P
    Histochem J; 1983 Sep; 15(9):861-79. PubMed ID: 6629852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidized glutathione levels in erythrocytes of glucose-6-phosphate-dehydrogenase-deficient subjects.
    Srivastava SK; Beutler E
    Lancet; 1968 Jul; 2(7558):23-4. PubMed ID: 4172687
    [No Abstract]   [Full Text] [Related]  

  • 57. Characterization of erythrocytic glucose-6-phosphate dehydrogenase in a mouse strain with reduced G6PD activity.
    Neifer S; Jung A; Bienzle U
    Biomed Biochim Acta; 1991; 50(3):233-8. PubMed ID: 1953691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic analysis in single, intact cells by microspectrophotometry: evidence for two populations of erythrocytes in an individual heterozygous for glucose-6-phosphate dehydrogenase deficiency.
    Ashmun RA; Hultquist DE; Schultz JS
    Am J Hematol; 1986 Dec; 23(4):311-6. PubMed ID: 3788959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glucose-6-phosphate dehydrogenase, the pentose phosphate cycle, and its place in carbohydrate metabolism.
    Horecker BL
    Am J Clin Pathol; 1967 Mar; 47(3):271-81. PubMed ID: 4381231
    [No Abstract]   [Full Text] [Related]  

  • 60. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus).
    Dudley BF; Winston GW
    Arch Biochem Biophys; 1995 Feb; 316(2):879-85. PubMed ID: 7532387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.