These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20436673)

  • 1. Amino acid accumulation limits the overexpression of proteins in Lactococcus lactis.
    Marreddy RK; Geertsma ER; Permentier HP; Pinto JP; Kok J; Poolman B
    PLoS One; 2010 Apr; 5(4):e10317. PubMed ID: 20436673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis.
    Guédon E; Serror P; Ehrlich SD; Renault P; Delorme C
    Mol Microbiol; 2001 Jun; 40(5):1227-39. PubMed ID: 11401725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA).
    den Hengst CD; Groeneveld M; Kuipers OP; Kok J
    J Bacteriol; 2006 May; 188(9):3280-9. PubMed ID: 16621821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis.
    Godon JJ; Delorme C; Bardowski J; Chopin MC; Ehrlich SD; Renault P
    J Bacteriol; 1993 Jul; 175(14):4383-90. PubMed ID: 8331070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis.
    Godon JJ; Chopin MC; Ehrlich SD
    J Bacteriol; 1992 Oct; 174(20):6580-9. PubMed ID: 1400210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bacteriocin-induced cell damage on the branched-chain amino acid transamination by Lactococcus lactis.
    Martínez-Cuesta C; Requena T; Peláez C
    FEMS Microbiol Lett; 2002 Nov; 217(1):109-13. PubMed ID: 12445653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, and functional characterization of secondary amino acid transporters of Lactococcus lactis.
    Trip H; Mulder NL; Lolkema JS
    J Bacteriol; 2013 Jan; 195(2):340-50. PubMed ID: 23144255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression in Lactococcus lactis of functional genes related to amino acid catabolism and cheese aroma formation is influenced by branched chain amino acids.
    García-Cayuela T; Gómez de Cadiñanos LP; Peláez C; Requena T
    Int J Food Microbiol; 2012 Oct; 159(3):207-13. PubMed ID: 23107499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk.
    Gitton C; Meyrand M; Wang J; Caron C; Trubuil A; Guillot A; Mistou MY
    Appl Environ Microbiol; 2005 Nov; 71(11):7152-63. PubMed ID: 16269754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.
    Lahtvee PJ; Adamberg K; Arike L; Nahku R; Aller K; Vilu R
    Microb Cell Fact; 2011 Feb; 10():12. PubMed ID: 21349178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator.
    Petranovic D; Guédon E; Sperandio B; Delorme C; Ehrlich D; Renault P
    Mol Microbiol; 2004 Jul; 53(2):613-21. PubMed ID: 15228538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the pleiotropic transcriptional regulator CodY on the conversion of branched-chain amino acids into branched-chain aldehydes in
    Chen C; Huang Z; Ge C; Yu H; Yuan H; Tian H
    Appl Environ Microbiol; 2023 Nov; 89(11):e0149323. PubMed ID: 37943058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of α-ketoglutarate by citrate transporter CitP drives transamination in Lactococcus lactis.
    Pudlik AM; Lolkema JS
    Appl Environ Microbiol; 2013 Feb; 79(4):1095-101. PubMed ID: 23204417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic di-AMP Oversight of Counter-Ion Osmolyte Pools Impacts Intrinsic Cefuroxime Resistance in Lactococcus lactis.
    Pham HT; Shi W; Xiang Y; Foo SY; Plan MR; Courtin P; Chapot-Chartier MP; Smid EJ; Liang ZX; Marcellin E; Turner MS
    mBio; 2021 Apr; 12(2):. PubMed ID: 33832972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rerouting citrate metabolism in Lactococcus lactis to citrate-driven transamination.
    Pudlik AM; Lolkema JS
    Appl Environ Microbiol; 2012 Sep; 78(18):6665-73. PubMed ID: 22798354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology and substrate specificity of two closely related amino acid transporters, SerP1 and SerP2, of Lactococcus lactis.
    Noens EE; Lolkema JS
    J Bacteriol; 2015 Mar; 197(5):951-8. PubMed ID: 25535271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis.
    Fulyani F; Schuurman-Wolters GK; Slotboom DJ; Poolman B
    J Bacteriol; 2016 Feb; 198(3):477-85. PubMed ID: 26553850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of Lactococcus lactis to membrane protein production.
    Marreddy RK; Pinto JP; Wolters JC; Geertsma ER; Fusetti F; Permentier HP; Kuipers OP; Kok J; Poolman B
    PLoS One; 2011; 6(8):e24060. PubMed ID: 21904605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR.
    Pinto JP; Kuipers OP; Marreddy RK; Poolman B; Kok J
    PLoS One; 2011; 6(7):e21873. PubMed ID: 21818275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.