These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20436907)

  • 61. Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex.
    Alitto HJ; Usrey WM
    J Neurophysiol; 2004 Jun; 91(6):2797-808. PubMed ID: 14762157
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The maximum range and timing of excitatory contextual modulation in monkey primary visual cortex.
    Alexander DM; Wright JJ
    Vis Neurosci; 2006; 23(5):721-8. PubMed ID: 17020628
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Decoupling of BOLD amplitude and pattern classification of orientation-selective activity in human visual cortex.
    Albers AM; Meindertsma T; Toni I; de Lange FP
    Neuroimage; 2018 Oct; 180(Pt A):31-40. PubMed ID: 28951159
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Temporal codes and sparse representations: a key to understanding rapid processing in the visual system.
    Guyonneau R; Vanrullen R; Thorpe SJ
    J Physiol Paris; 2004; 98(4-6):487-97. PubMed ID: 16275045
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pattern classification precedes region-average hemodynamic response in early visual cortex.
    Kohler PJ; Fogelson SV; Reavis EA; Meng M; Guntupalli JS; Hanke M; Halchenko YO; Connolly AC; Haxby JV; Tse PU
    Neuroimage; 2013 Sep; 78():249-60. PubMed ID: 23587693
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hierarchical stimulus processing in rodent primary and lateral visual cortex as assessed through neuronal selectivity and repetition suppression.
    Kaliukhovich DA; Op de Beeck H
    J Neurophysiol; 2018 Sep; 120(3):926-941. PubMed ID: 29742022
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex.
    Moore BD; Alitto HJ; Usrey WM
    J Neurophysiol; 2005 Aug; 94(2):1336-45. PubMed ID: 15872063
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Laminar Differences in Responses to Naturalistic Texture in Macaque V1 and V2.
    Ziemba CM; Perez RK; Pai J; Kelly JG; Hallum LE; Shooner C; Movshon JA
    J Neurosci; 2019 Dec; 39(49):9748-9756. PubMed ID: 31666355
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Timing precision in population coding of natural scenes in the early visual system.
    Desbordes G; Jin J; Weng C; Lesica NA; Stanley GB; Alonso JM
    PLoS Biol; 2008 Dec; 6(12):e324. PubMed ID: 19090624
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Information processing in the LGN: a comparison of neural codes and cell types.
    Pregowska A; Casti A; Kaplan E; Wajnryb E; Szczepanski J
    Biol Cybern; 2019 Aug; 113(4):453-464. PubMed ID: 31243531
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.
    Supèr H; van der Togt C; Spekreijse H; Lamme VA
    J Neurosci; 2003 Apr; 23(8):3407-14. PubMed ID: 12716948
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission.
    Richmond BJ; Optican LM
    J Neurophysiol; 1990 Aug; 64(2):370-80. PubMed ID: 2213123
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamic properties of the representation of the visual field midline in the visual areas 17 and 18 of the ferret (Mustela putorius).
    Nakamura H; Chaumon M; Klijn F; Innocenti GM
    Cereb Cortex; 2008 Aug; 18(8):1941-50. PubMed ID: 18065721
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of visual cortex removal on receptive-field properties of neurons in lateral suprasylvian visual area of the cat.
    Spear PD; Baumann TP
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):31-56. PubMed ID: 430113
    [No Abstract]   [Full Text] [Related]  

  • 75. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
    Larsson J; Harrison C; Jackson J; Oh SM; Zeringyte V
    J Neurophysiol; 2017 Feb; 117(2):818-835. PubMed ID: 27903637
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Membrane potential and firing rate in cat primary visual cortex.
    Carandini M; Ferster D
    J Neurosci; 2000 Jan; 20(1):470-84. PubMed ID: 10627623
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Receptive field properties of neurons in the early visual cortex revealed by local spectral reverse correlation.
    Nishimoto S; Ishida T; Ohzawa I
    J Neurosci; 2006 Mar; 26(12):3269-80. PubMed ID: 16554477
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Testing the assumptions underlying fMRI adaptation using intracortical recordings in area MT.
    Kar K; Krekelberg B
    Cortex; 2016 Jul; 80():21-34. PubMed ID: 26856637
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Two phases of V1 activity for visual recognition of natural images.
    Camprodon JA; Zohary E; Brodbeck V; Pascual-Leone A
    J Cogn Neurosci; 2010 Jun; 22(6):1262-9. PubMed ID: 19413482
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Stimulus competition by inhibitory interference.
    Tiesinga PH
    Neural Comput; 2005 Nov; 17(11):2421-53. PubMed ID: 16156934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.