These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 20437085)
21. Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats. Yune TY; Lee JY; Cui CM; Kim HC; Oh TH J Neurochem; 2009 Aug; 110(4):1276-87. PubMed ID: 19519665 [TBL] [Abstract][Full Text] [Related]
22. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Liu Z; Yao X; Jiang W; Li W; Zhu S; Liao C; Zou L; Ding R; Chen J J Neuroinflammation; 2020 Mar; 17(1):90. PubMed ID: 32192500 [TBL] [Abstract][Full Text] [Related]
23. Prominent microglial activation in the early proinflammatory immune response in naturally occurring canine spinal cord injury. Spitzbarth I; Bock P; Haist V; Stein VM; Tipold A; Wewetzer K; Baumgärtner W; Beineke A J Neuropathol Exp Neurol; 2011 Aug; 70(8):703-14. PubMed ID: 21760535 [TBL] [Abstract][Full Text] [Related]
24. The cellular inflammatory response in human spinal cords after injury. Fleming JC; Norenberg MD; Ramsay DA; Dekaban GA; Marcillo AE; Saenz AD; Pasquale-Styles M; Dietrich WD; Weaver LC Brain; 2006 Dec; 129(Pt 12):3249-69. PubMed ID: 17071951 [TBL] [Abstract][Full Text] [Related]
25. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Li Y; Ritzel RM; Khan N; Cao T; He J; Lei Z; Matyas JJ; Sabirzhanov B; Liu S; Li H; Stoica BA; Loane DJ; Faden AI; Wu J Theranostics; 2020; 10(25):11376-11403. PubMed ID: 33052221 [TBL] [Abstract][Full Text] [Related]
26. Programmed death protein 1 is essential for maintaining the anti-inflammatory function of infiltrating regulatory T cells in a murine spinal cord injury model. He X; Lin S; Yang L; Tan P; Ma P; Qiu P; Zheng C; Zhang X; Kang W; Lin W J Neuroimmunol; 2021 May; 354():577546. PubMed ID: 33744709 [TBL] [Abstract][Full Text] [Related]
27. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. Zhang Y; Liu Z; Zhang W; Wu Q; Zhang Y; Liu Y; Guan Y; Chen X J Neurosci Res; 2019 Jul; 97(7):733-743. PubMed ID: 31006904 [TBL] [Abstract][Full Text] [Related]
28. Inflammation: A Target for Treatment in Spinal Cord Injury. Freyermuth-Trujillo X; Segura-Uribe JJ; Salgado-Ceballos H; Orozco-Barrios CE; Coyoy-Salgado A Cells; 2022 Aug; 11(17):. PubMed ID: 36078099 [TBL] [Abstract][Full Text] [Related]
29. Macrophage-based delivery of interleukin-13 improves functional and histopathological outcomes following spinal cord injury. Van Broeckhoven J; Erens C; Sommer D; Scheijen E; Sanchez S; Vidal PM; Dooley D; Van Breedam E; Quarta A; Ponsaerts P; Hendrix S; Lemmens S J Neuroinflammation; 2022 Apr; 19(1):102. PubMed ID: 35488301 [TBL] [Abstract][Full Text] [Related]
31. Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Dai W; Wang X; Teng H; Li C; Wang B; Wang J Int Immunopharmacol; 2019 Jan; 66():215-223. PubMed ID: 30472522 [TBL] [Abstract][Full Text] [Related]
32. Timing and duration of anti-alpha4beta1 integrin treatment after spinal cord injury: effect on therapeutic efficacy. Fleming JC; Bao F; Chen Y; Hamilton EF; Gonzalez-Lara LE; Foster PJ; Weaver LC J Neurosurg Spine; 2009 Nov; 11(5):575-87. PubMed ID: 19929361 [TBL] [Abstract][Full Text] [Related]
33. Immunotherapy strategies for spinal cord injury. Wang YT; Lu XM; Chen KT; Shu YH; Qiu CH Curr Pharm Biotechnol; 2015; 16(6):492-505. PubMed ID: 25860061 [TBL] [Abstract][Full Text] [Related]
34. Extremely low frequency magnetic field protects injured spinal cord from the microglia- and iron-induced tissue damage. Dey S; Bose S; Kumar S; Rathore R; Mathur R; Jain S Electromagn Biol Med; 2017; 36(4):330-340. PubMed ID: 29140736 [TBL] [Abstract][Full Text] [Related]
35. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Alexander JK; Popovich PG Prog Brain Res; 2009; 175():125-37. PubMed ID: 19660652 [TBL] [Abstract][Full Text] [Related]
36. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. Wang C; Wang Q; Lou Y; Xu J; Feng Z; Chen Y; Tang Q; Zheng G; Zhang Z; Wu Y; Tian N; Zhou Y; Xu H; Zhang X J Cell Mol Med; 2018 Feb; 22(2):1148-1166. PubMed ID: 29148269 [TBL] [Abstract][Full Text] [Related]
37. Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. Fan H; Tang HB; Shan LQ; Liu SC; Huang DG; Chen X; Chen Z; Yang M; Yin XH; Yang H; Hao DJ J Neuroinflammation; 2019 Nov; 16(1):206. PubMed ID: 31699098 [TBL] [Abstract][Full Text] [Related]
38. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. Ghosh M; Xu Y; Pearse DD J Neuroinflammation; 2016 Jan; 13():9. PubMed ID: 26757726 [TBL] [Abstract][Full Text] [Related]
39. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. Pineau I; Lacroix S J Comp Neurol; 2007 Jan; 500(2):267-85. PubMed ID: 17111361 [TBL] [Abstract][Full Text] [Related]
40. Sting is a critical regulator of spinal cord injury by regulating microglial inflammation via interacting with TBK1 in mice. Wang YY; Shen D; Zhao LJ; Zeng N; Hu TH Biochem Biophys Res Commun; 2019 Oct; 517(4):741-748. PubMed ID: 31400857 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]