BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20437167)

  • 21. The MarR family transcription factor Rv1404 coordinates adaptation of Mycobacterium tuberculosis to acid stress via controlled expression of Rv1405c, a virulence-associated methyltransferase.
    Healy C; Golby P; MacHugh DE; Gordon SV
    Tuberculosis (Edinb); 2016 Mar; 97():154-62. PubMed ID: 26615221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mycobacterium tuberculosis Rv0198c, a putative matrix metalloprotease is involved in pathogenicity.
    Muttucumaru DG; Smith DA; McMinn EJ; Reese V; Coler RN; Parish T
    Tuberculosis (Edinb); 2011 Mar; 91(2):111-6. PubMed ID: 21216669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. senX3-independent contribution of regX3 to Mycobacterium tuberculosis virulence.
    Rifat D; Belchis DA; Karakousis PC
    BMC Microbiol; 2014 Oct; 14():265. PubMed ID: 25344463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deletion and overexpression studies on DacB2, a putative low molecular mass penicillin binding protein from Mycobacterium tuberculosis H(37)Rv.
    Bourai N; Jacobs WR; Narayanan S
    Microb Pathog; 2012 Feb; 52(2):109-16. PubMed ID: 22138550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PknH, a transmembrane Hank's type serine/threonine kinase from Mycobacterium tuberculosis is differentially expressed under stress conditions.
    Sharma K; Chandra H; Gupta PK; Pathak M; Narayan A; Meena LS; D'Souza RC; Chopra P; Ramachandran S; Singh Y
    FEMS Microbiol Lett; 2004 Apr; 233(1):107-13. PubMed ID: 15043876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis.
    Sharma A; Rustad T; Mahajan G; Kumar A; Rao KV; Banerjee S; Sherman DR; Mande SC
    Tuberculosis (Edinb); 2016 Mar; 97():137-46. PubMed ID: 26822628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives.
    Zheng F; Long Q; Xie J
    Cell Biochem Biophys; 2012 Jun; 63(2):103-8. PubMed ID: 22388511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in vivo.
    Hu Y; Movahedzadeh F; Stoker NG; Coates AR
    Infect Immun; 2006 Feb; 74(2):861-8. PubMed ID: 16428728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functioning of Mycobacterial Heat Shock Repressors Requires the Master Virulence Regulator PhoP.
    Sevalkar RR; Arora D; Singh PR; Singh R; Nandicoori VK; Karthikeyan S; Sarkar D
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30962357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity.
    Hong Y; Zhou X; Fang H; Yu D; Li C; Sun B
    Tuberculosis (Edinb); 2013 Nov; 93(6):625-34. PubMed ID: 24080120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of virulence genes in Mycobacterium tuberculosis.
    Mehrotra J; Bishai WR
    Int J Med Microbiol; 2001 May; 291(2):171-82. PubMed ID: 11437339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa.
    Neidig A; Yeung AT; Rosay T; Tettmann B; Strempel N; Rueger M; Lesouhaitier O; Overhage J
    BMC Microbiol; 2013 Apr; 13():77. PubMed ID: 23570569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A transcriptional co-repressor regulatory circuit controlling the heat-shock response of Mycobacterium tuberculosis.
    Singh R; Anil Kumar V; Das AK; Bansal R; Sarkar D
    Mol Microbiol; 2014 Oct; 94(2):450-65. PubMed ID: 25171378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mycobacterium tuberculosis virulence-regulator PhoP interacts with alternative sigma factor SigE during acid-stress response.
    Bansal R; Anil Kumar V; Sevalkar RR; Singh PR; Sarkar D
    Mol Microbiol; 2017 May; 104(3):400-411. PubMed ID: 28142206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Serine/threonine kinase PknL, is involved in the adaptive response of Mycobacterium tuberculosis.
    Refaya AK; Sharma D; Kumar V; Bisht D; Narayanan S
    Microbiol Res; 2016 Sep; 190():1-11. PubMed ID: 27393993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DevR (DosR) binding peptide inhibits adaptation of Mycobacterium tuberculosis under hypoxia.
    Dhingra S; Kaur K; Taneja NK; Tyagi JS
    FEMS Microbiol Lett; 2012 May; 330(1):66-71. PubMed ID: 22372912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions].
    Prozorov AA; Fedorova IA; Bekker OB; Danilenko VN
    Genetika; 2014 Aug; 50(8):885-908. PubMed ID: 25731019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein kinase G confers survival advantage to
    Khan MZ; Bhaskar A; Upadhyay S; Kumari P; Rajmani RS; Jain P; Singh A; Kumar D; Bhavesh NS; Nandicoori VK
    J Biol Chem; 2017 Sep; 292(39):16093-16108. PubMed ID: 28821621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adjusting to a new home: Mycobacterium tuberculosis gene expression in response to an intracellular lifestyle.
    Stokes RW; Waddell SJ
    Future Microbiol; 2009 Dec; 4(10):1317-35. PubMed ID: 19995191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus.
    Liu P; Myo T; Ma W; Lan D; Qi T; Guo J; Song P; Guo J; Kang Z
    Front Plant Sci; 2016; 7():873. PubMed ID: 27446108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.