These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20437269)

  • 1. Groundwater potential zoning of a peri-urban wetland of south Bengal Basin, India.
    Sahu P; Sikdar PK
    Environ Monit Assess; 2011 Mar; 174(1-4):119-34. PubMed ID: 20437269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India.
    Saha D; Dhar YR; Vittala SS
    Environ Monit Assess; 2010 Jun; 165(1-4):179-91. PubMed ID: 19415511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Groundwater risk assessment at a heavily industrialised catchment and the associated impacts on a peri-urban wetland.
    Dimitriou E; Karaouzas I; Sarantakos K; Zacharias I; Bogdanos K; Diapoulis A
    J Environ Manage; 2008 Aug; 88(3):526-38. PubMed ID: 17499908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation of groundwater resources and recharge in Chithar River Basin, South India.
    Subramani T; Babu S; Elango L
    Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.
    Meredith K; Cendón DI; Pigois JP; Hollins S; Jacobsen G
    Sci Total Environ; 2012 Jan; 414():456-69. PubMed ID: 22104381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.
    Lewis DB; Feit SJ
    Glob Chang Biol; 2015 Apr; 21(4):1704-14. PubMed ID: 25394332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling hydrological effects of wetland restoration: a differentiated view.
    Staes J; Rubarenzya MH; Meire P; Willems P
    Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migration of As, and (3)H/(3)He ages, in groundwater from West Bengal: Implications for monitoring.
    McArthur JM; Banerjee DM; Sengupta S; Ravenscroft P; Klump S; Sarkar A; Disch B; Kipfer R
    Water Res; 2010 Jul; 44(14):4171-85. PubMed ID: 20542311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility.
    Chae GT; Kim K; Yun ST; Kim KH; Kim SO; Choi BY; Kim HS; Rhee CW
    Chemosphere; 2004 Apr; 55(3):369-78. PubMed ID: 14987935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: a functional relationship.
    Kundu MC; Mandal B; Hazra GC
    Sci Total Environ; 2009 Apr; 407(8):2771-82. PubMed ID: 19195681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of urban aquifer exploitation on subsurface temperature and water quality.
    Abe H; Tang C; Kondoh A
    Ground Water; 2014 Sep; 52 Suppl 1():186-94. PubMed ID: 24393085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore district, South India.
    Jeevanandam M; Kannan R; Srinivasalu S; Rammohan V
    Environ Monit Assess; 2007 Sep; 132(1-3):263-74. PubMed ID: 17180415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cl/Br mass ratio and water quality index from the Quaternary aquifer of south Bengal Basin in India.
    Banerjee S; Sikdar PK
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):55971-55989. PubMed ID: 35322367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water quality as an indicator of hydrogeological conditions: a case study of the Belgrade Groundwater Source (Sava/Danube confluence area).
    Papić P; Pušić M; Todorović M
    Water Sci Technol; 2012; 65(12):2265-71. PubMed ID: 22643425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollutant removal within hybrid constructed wetland systems in tropical regions.
    Yeh TY; Wu CH
    Water Sci Technol; 2009; 59(2):233-40. PubMed ID: 19182332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China.
    Jiao JJ; Wang Y; Cherry JA; Wang X; Zhi B; Du H; Wen D
    Environ Sci Technol; 2010 Oct; 44(19):7470-5. PubMed ID: 20806932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying area changes of internationally important wetlands due to water consumption in LCA.
    Verones F; Pfister S; Hellweg S
    Environ Sci Technol; 2013 Sep; 47(17):9799-807. PubMed ID: 23930946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates.
    Lin YF; Jing SR; Lee DY; Chang YF; Shih KC
    Bioresour Technol; 2008 Nov; 99(16):7504-13. PubMed ID: 18387297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.