These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 20437452)
21. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Wyman CE; Dale BE; Elander RT; Holtzapple M; Ladisch MR; Lee YY Bioresour Technol; 2005 Dec; 96(18):2026-32. PubMed ID: 16112491 [TBL] [Abstract][Full Text] [Related]
22. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Stöcker M Angew Chem Int Ed Engl; 2008; 47(48):9200-11. PubMed ID: 18937235 [TBL] [Abstract][Full Text] [Related]
23. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures. Guo F; Fang Z; Zhou TJ Bioresour Technol; 2012 May; 112():313-8. PubMed ID: 22429401 [TBL] [Abstract][Full Text] [Related]
24. Simulation of acid-catalysed organosolv fractionation of wheat straw. Sidiras D; Koukios E Bioresour Technol; 2004 Aug; 94(1):91-8. PubMed ID: 15081492 [TBL] [Abstract][Full Text] [Related]
25. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Wang A; Zhang T Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609 [TBL] [Abstract][Full Text] [Related]
26. Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. Ogasawara Y; Itagaki S; Yamaguchi K; Mizuno N ChemSusChem; 2011 Apr; 4(4):519-25. PubMed ID: 21404445 [TBL] [Abstract][Full Text] [Related]
27. Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Kim KH; Tucker MP; Nguyen QA Biotechnol Prog; 2002; 18(3):489-94. PubMed ID: 12052064 [TBL] [Abstract][Full Text] [Related]
28. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. West RM; Liu ZY; Peter M; Dumesic JA ChemSusChem; 2008; 1(5):417-24. PubMed ID: 18702136 [TBL] [Abstract][Full Text] [Related]
29. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Liu C; Wyman CE Bioresour Technol; 2005 Dec; 96(18):1978-85. PubMed ID: 16112485 [TBL] [Abstract][Full Text] [Related]
30. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bower S; Wickramasinghe R; Nagle NJ; Schell DJ Bioresour Technol; 2008 Oct; 99(15):7354-62. PubMed ID: 17616458 [TBL] [Abstract][Full Text] [Related]
31. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. Galkin MV; Samec JS ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230 [TBL] [Abstract][Full Text] [Related]
32. Catalytic strategies for changing the energy content and achieving C--C coupling in biomass-derived oxygenated hydrocarbons. Simonetti DA; Dumesic JA ChemSusChem; 2008; 1(8-9):725-33. PubMed ID: 18683271 [TBL] [Abstract][Full Text] [Related]
33. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Chundawat SP; Balan V; Dale BE Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256 [TBL] [Abstract][Full Text] [Related]
34. Catalytic production of biofuels (butene oligomers) and biochemicals (tetrahydrofurfuryl alcohol) from corn stover. Byun J; Han J Bioresour Technol; 2016 Jul; 211():360-6. PubMed ID: 27030955 [TBL] [Abstract][Full Text] [Related]
35. Fermentable sugars by chemical hydrolysis of biomass. Binder JB; Raines RT Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4516-21. PubMed ID: 20194793 [TBL] [Abstract][Full Text] [Related]
36. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Wang Y; Deng W; Wang B; Zhang Q; Wan X; Tang Z; Wang Y; Zhu C; Cao Z; Wang G; Wan H Nat Commun; 2013; 4():2141. PubMed ID: 23846730 [TBL] [Abstract][Full Text] [Related]
37. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Alonso DM; Wettstein SG; Dumesic JA Chem Soc Rev; 2012 Dec; 41(24):8075-98. PubMed ID: 22872312 [TBL] [Abstract][Full Text] [Related]
38. Pretreatment of lignocellulosic materials for efficient bioethanol production. Galbe M; Zacchi G Adv Biochem Eng Biotechnol; 2007; 108():41-65. PubMed ID: 17646946 [TBL] [Abstract][Full Text] [Related]
39. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Yang B; Wyman CE Biotechnol Bioeng; 2004 Apr; 86(1):88-95. PubMed ID: 15007845 [TBL] [Abstract][Full Text] [Related]
40. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. He X; Miao Y; Jiang X; Xu Z; Ouyang P Appl Biochem Biotechnol; 2010 Apr; 160(8):2449-57. PubMed ID: 19669940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]