These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20437490)

  • 1. Schottky quantum dot solar cells stable in air under solar illumination.
    Tang J; Wang X; Brzozowski L; Barkhouse DA; Debnath R; Levina L; Sargent EH
    Adv Mater; 2010 Mar; 22(12):1398-402. PubMed ID: 20437490
    [No Abstract]   [Full Text] [Related]  

  • 2. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell.
    Luther JM; Gao J; Lloyd MT; Semonin OE; Beard MC; Nozik AJ
    Adv Mater; 2010 Sep; 22(33):3704-7. PubMed ID: 20533423
    [No Abstract]   [Full Text] [Related]  

  • 3. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.
    Zhou N; Yang Y; Huang X; Wu H; Luo Y; Li D; Meng Q
    ChemSusChem; 2013 Apr; 6(4):687-92. PubMed ID: 23495072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2 S3 nanocrystals.
    Rath AK; Bernechea M; Martinez L; Konstantatos G
    Adv Mater; 2011 Aug; 23(32):3712-7. PubMed ID: 21732560
    [No Abstract]   [Full Text] [Related]  

  • 5. Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells.
    Yoon W; Boercker JE; Lumb MP; Placencia D; Foos EE; Tischler JG
    Sci Rep; 2013; 3():2225. PubMed ID: 23868514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells.
    Rath AK; Pelayo Garcia de Arquer F; Stavrinadis A; Lasanta T; Bernechea M; Diedenhofen SL; Konstantatos G
    Adv Mater; 2014 Jul; 26(27):4741-7. PubMed ID: 24895324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet exciton fission-sensitized infrared quantum dot solar cells.
    Ehrler B; Wilson MW; Rao A; Friend RH; Greenham NC
    Nano Lett; 2012 Feb; 12(2):1053-7. PubMed ID: 22257168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells.
    Chuang CH; Maurano A; Brandt RE; Hwang GW; Jean J; Buonassisi T; Bulović V; Bawendi MG
    Nano Lett; 2015 May; 15(5):3286-94. PubMed ID: 25927871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells.
    Li C; Yang L; Xiao J; Wu YC; Søndergaard M; Luo Y; Li D; Meng Q; Iversen BB
    Phys Chem Chem Phys; 2013 Jun; 15(22):8710-5. PubMed ID: 23639947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells.
    Kramer IJ; Zhitomirsky D; Bass JD; Rice PM; Topuria T; Krupp L; Thon SM; Ip AH; Debnath R; Kim HC; Sargent EH
    Adv Mater; 2012 May; 24(17):2315-9. PubMed ID: 22467240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition.
    Yu XY; Liao JY; Qiu KQ; Kuang DB; Su CY
    ACS Nano; 2011 Dec; 5(12):9494-500. PubMed ID: 22032641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells.
    Tsukigase H; Suzuki Y; Berger MH; Sagawa T; Yoshikawa S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1914-22. PubMed ID: 21449328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wet chemical synthesis and self-assembly of SnS2 nanoparticles on TiO2 for quantum dot-sensitized solar cells.
    Tsukigase H; Suzuki Y; Berger MH; Sagawa T; Yoshikawa S
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3215-21. PubMed ID: 21776689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-processed nanocrystal quantum dot tandem solar cells.
    Choi JJ; Wenger WN; Hoffman RS; Lim YF; Luria J; Jasieniak J; Marohn JA; Hanrath T
    Adv Mater; 2011 Jul; 23(28):3144-8. PubMed ID: 21638347
    [No Abstract]   [Full Text] [Related]  

  • 15. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G
    Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric-polarization-enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells.
    Shi J; Zhao P; Wang X
    Adv Mater; 2013 Feb; 25(6):916-21. PubMed ID: 23184468
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction.
    Abbas MA; Basit MA; Park TJ; Bang JH
    Phys Chem Chem Phys; 2015 Apr; 17(15):9752-60. PubMed ID: 25773573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.
    Choi H; Nicolaescu R; Paek S; Ko J; Kamat PV
    ACS Nano; 2011 Nov; 5(11):9238-45. PubMed ID: 21961965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells.
    Jean J; Chang S; Brown PR; Cheng JJ; Rekemeyer PH; Bawendi MG; Gradečak S; Bulović V
    Adv Mater; 2013 May; 25(20):2790-6. PubMed ID: 23440957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sea urchin TiO2-nanoparticle hybrid composite photoelectrodes for CdS/CdSe/ZnS quantum-dot-sensitized solar cells.
    Kong EH; Chang YJ; Park YC; Yoon YH; Park HJ; Jang HM
    Phys Chem Chem Phys; 2012 Apr; 14(13):4620-5. PubMed ID: 22362094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.