These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20437579)

  • 1. Specific immunotherapy of experimental myasthenia gravis by a novel mechanism.
    Luo J; Kuryatov A; Lindstrom JM
    Ann Neurol; 2010 Apr; 67(4):441-51. PubMed ID: 20437579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine receptor-specific immunosuppressive therapy of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Luo J; Lindstrom J
    Ann N Y Acad Sci; 2018 Feb; 1413(1):76-81. PubMed ID: 29377167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis.
    Luo J; Lindstrom J
    J Immunol; 2014 Nov; 193(10):5044-55. PubMed ID: 25288571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myasthenia gravis and the tops and bottoms of AChRs: antigenic structure of the MIR and specific immunosuppression of EAMG using AChR cytoplasmic domains.
    Lindstrom J; Luo J; Kuryatov A
    Ann N Y Acad Sci; 2008; 1132():29-41. PubMed ID: 18567851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AChR-specific immunosuppressive therapy of myasthenia gravis.
    Luo J; Lindstrom J
    Biochem Pharmacol; 2015 Oct; 97(4):609-619. PubMed ID: 26215875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myasthenogenicity of the main immunogenic region.
    Lindstrom J; Luo J
    Ann N Y Acad Sci; 2012 Dec; 1274(1):9-13. PubMed ID: 23252892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myasthenogenicity of the main immunogenic region and endogenous muscle nicotinic acetylcholine receptors.
    Luo J; Lindstrom J
    Autoimmunity; 2012 May; 45(3):245-52. PubMed ID: 21950318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenous IL-9 Ameliorates Experimental Autoimmune Myasthenia Gravis Symptoms in Rats.
    Yao X; Zhao J; Kong Q; Xie X; Wang J; Sun B; Xu L; Mu L; Li H
    Immunol Invest; 2018 Oct; 47(7):712-724. PubMed ID: 29944018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breakage of tolerance to hidden cytoplasmic epitopes of the acetylcholine receptor in experimental autoimmune myasthenia gravis.
    Feferman T; Im SH; Fuchs S; Souroujon MC
    J Neuroimmunol; 2003 Jul; 140(1-2):153-8. PubMed ID: 12864983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis.
    Thiruppathi M; Sheng JR; Li L; Prabhakar BS; Meriggioli MN
    J Autoimmun; 2014 Aug; 52():64-73. PubMed ID: 24388113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of nasal tolerance induced by a recombinant fragment of acetylcholine receptor for treatment of experimental myasthenia gravis.
    Im SH; Barchan D; Fuchs S; Souroujon MC
    J Neuroimmunol; 2000 Nov; 111(1-2):161-8. PubMed ID: 11063834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a reproducible rat EAMG model induced with various human acetylcholine receptor domains.
    Lazaridis K; Baltatzidi V; Trakas N; Koutroumpi E; Karandreas N; Tzartos SJ
    J Neuroimmunol; 2017 Feb; 303():13-21. PubMed ID: 28038891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel complement inhibitor limits severity of experimentally myasthenia gravis.
    Soltys J; Kusner LL; Young A; Richmonds C; Hatala D; Gong B; Shanmugavel V; Kaminski HJ
    Ann Neurol; 2009 Jan; 65(1):67-75. PubMed ID: 19194881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
    Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH
    Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades?
    Baggi F; Antozzi C; Toscani C; Cordiglieri C
    Arch Immunol Ther Exp (Warsz); 2012 Feb; 60(1):19-30. PubMed ID: 22159475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment.
    Im SH; Barchan D; Fuchs S; Souroujon MC
    J Clin Invest; 1999 Dec; 104(12):1723-30. PubMed ID: 10606626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.
    Im SH; Barchan D; Maiti PK; Fuchs S; Souroujon MC
    J Immunol; 2001 Jun; 166(11):6893-8. PubMed ID: 11359850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic cells exposed in vitro to TGF-beta1 ameliorate experimental autoimmune myasthenia gravis.
    Yarilin D; Duan R; Huang YM; Xiao BG
    Clin Exp Immunol; 2002 Feb; 127(2):214-9. PubMed ID: 11876742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.