These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20437778)

  • 1. Stabilization of residues obtained from the treatment of laboratory waste. Part 1--Treatment path of metals in a plasma melting system.
    Kuo YM; Chang JE; Chang KY; Chao CC; Tuan YJ; Chang-Chien GP
    J Air Waste Manag Assoc; 2010 Apr; 60(4):429-38. PubMed ID: 20437778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and physical properties of plasma slags containing various amorphous volume fractions.
    Kuo YM; Wang CT; Tsai CH; Wang LC
    J Hazard Mater; 2009 Feb; 162(1):469-75. PubMed ID: 18573600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of element distributions in an MSW ash melting treatment system.
    Sekito T; Dote Y; Onoue K; Sakanakura H; Nakamura K
    Waste Manag; 2014 Sep; 34(9):1637-43. PubMed ID: 24863626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of residues obtained from the treatment of laboratory waste: Part 2--transformation of plasma vitrified slag into composites.
    Kuo YM; Tseng HJ; Chang JE; Chao CC; Wang CT; Chang-Chien GP; Wang JW
    J Air Waste Manag Assoc; 2011 Jan; 61(1):78-84. PubMed ID: 21305891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal behavior during vitrification of incinerator ash in a coke bed furnace.
    Kuo YM; Lin TC; Tsai PJ
    J Hazard Mater; 2004 Jun; 109(1-3):79-84. PubMed ID: 15177748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitrification for reclaiming spent alkaline batteries.
    Kuo YM; Chang JE; Jin CH; Lin JY; Chang-Chien GP
    Waste Manag; 2009 Jul; 29(7):2132-9. PubMed ID: 19246187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.
    Yang Y; Xiao Y; Voncken JH; Wilson N
    J Hazard Mater; 2008 Jun; 154(1-3):871-9. PubMed ID: 18077086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW).
    Jung CH; Matsuto T; Tanaka N
    Waste Manag; 2005; 25(3):301-10. PubMed ID: 15823745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.
    Wang KS; Lin KL; Lee CH
    J Hazard Mater; 2009 Feb; 162(1):338-43. PubMed ID: 18573610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of heavy metals from iron bath-melting separation process applied to municipal solid waste incineration fly ash.
    Wei CM; Liu QC; Wen J
    Environ Technol; 2009 Dec; 30(14):1503-9. PubMed ID: 20183994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash.
    Pei SL; Chen TL; Pan SY; Yang YL; Sun ZH; Li YJ
    J Hazard Mater; 2020 Nov; 398():122959. PubMed ID: 32474322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electric arc vitrification of bottom ash on the mobility and fate of metals.
    Ecke H; Sakanakura H; Matsuto T; Tanaka N; Lagerkvist A
    Environ Sci Technol; 2001 Apr; 35(7):1531-6. PubMed ID: 11348097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling.
    Long YY; Feng YJ; Cai SS; Ding WX; Shen DS
    J Hazard Mater; 2013 Oct; 261():427-34. PubMed ID: 23973476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High temperature behavior of electrostatic precipitator ash from municipal solid waste combustors.
    Le Forestier L; Libourel G
    J Hazard Mater; 2008 Jun; 154(1-3):373-80. PubMed ID: 18036736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag.
    Zhang Z; Li A; Wang X; Zhang L
    Waste Manag; 2016 Oct; 56():238-45. PubMed ID: 27432549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.
    Boesch ME; Vadenbo C; Saner D; Huter C; Hellweg S
    Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitrification of chromium electroplating sludge.
    Li CT; Lee WJ; Huang KL; Fu SF; Lait YC
    Environ Sci Technol; 2007 Apr; 41(8):2950-6. PubMed ID: 17533863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration.
    Li Q; Meng A; Jia J; Zhang Y
    J Environ Sci (China); 2010; 22(5):760-8. PubMed ID: 20608514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Migration characteristics of heavy metals during pilot melting process of incineration fly ash].
    Li RD; Li YL; Wang L; Wang JP; Ke X
    Huan Jing Ke Xue; 2007 Dec; 28(12):2873-6. PubMed ID: 18290453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.