BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20437781)

  • 1. Uncertainties associated with the use of optical remote sensing technique to estimate surface emissions in landfill applications.
    Abichou T; Clark J; Tan S; Chanton J; Hater G; Green R; Goldsmith D; Barlaz MA; Swan N
    J Air Waste Manag Assoc; 2010 Apr; 60(4):460-70. PubMed ID: 20437781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.
    Viguria M; Ro KS; Stone KC; Johnson MH
    J Air Waste Manag Assoc; 2015 Apr; 65(4):395-403. PubMed ID: 25947209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to characterize emission contributions from area sources during optical remote sensing technique testing.
    Abichou T; Clark J; Chanton J; Hater G; Green R; Goldsmith D; Barlaz M; Swan N
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1403-10. PubMed ID: 23362759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane emissions from 20 landfills across the United States using vertical radial plume mapping.
    Goldsmith CD; Chanton J; Abichou T; Swan N; Green R; Haters G
    J Air Waste Manag Assoc; 2012 Feb; 62(2):183-97. PubMed ID: 22442934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field evaluation of a method for estimating gaseous fluxes from area sources using open-path Fourier transform infrared.
    Hashmonay RA; Natschke DF; Wagoner K; Harris DB; Thompson EL; Yost MG
    Environ Sci Technol; 2001 Jun; 35(11):2309-13. PubMed ID: 11414037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The challenge of quality assurance for emission flux measurements of large area sources by optical remote sensing.
    Wasson S; Wright R
    Qual Assur; 2003; 10(3-4):193-206. PubMed ID: 15764554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term landfill methane emissions dependency on wind.
    Delkash M; Zhou B; Han B; Chow FK; Rella CW; Imhoff PT
    Waste Manag; 2016 Sep; 55():288-98. PubMed ID: 26896003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys.
    Mønster JG; Samuelsson J; Kjeldsen P; Rella CW; Scheutz C
    Waste Manag; 2014 Aug; 34(8):1416-28. PubMed ID: 24759753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data.
    Amini HR; Reinhart DR; Niskanen A
    Waste Manag; 2013 Dec; 33(12):2720-8. PubMed ID: 23988298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.
    Ro KS; Johnson MH; Varma RM; Hashmonay RA; Hunt P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Aug; 44(10):1011-8. PubMed ID: 19827493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing methods to estimate emissions of non-methane organic compounds from landfills.
    Saquing JM; Chanton JP; Yazdani R; Barlaz MA; Scheutz C; Blake DR; Imhoff PT
    Waste Manag; 2014 Nov; 34(11):2260-70. PubMed ID: 25108756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aircraft-based measurements of the carbon footprint of Indianapolis.
    Mays KL; Shepson PB; Stirm BH; Karion A; Sweeney C; Gurney KR
    Environ Sci Technol; 2009 Oct; 43(20):7816-23. PubMed ID: 19921899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a low-maintenance measurement approach to continuously estimate methane emissions: A case study.
    Riddick SN; Hancock BR; Robinson AD; Connors S; Davies S; Allen G; Pitt J; Harris NRP
    Waste Manag; 2018 Mar; 73():210-219. PubMed ID: 28003116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative approach for estimating fugitive gaseous fluxes using computed tomography and remote optical sensing techniques.
    Hashmonay RA; Yost MG
    J Air Waste Manag Assoc; 1999 Aug; 49(8):966-72. PubMed ID: 10484935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Spatial Resolution and XCO
    Li Z; Fan M; Tao J; Xu B
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locating pollutant emission sources with optical remote sensing measurements and an improved one-dimensional radial plume mapping technique.
    Wu CF; Lin SC; Yeh CK
    J Environ Monit; 2012 Apr; 14(4):1203-10. PubMed ID: 22382995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust method for estimating landfill methane emissions.
    Figueroa VK; Mackie KR; Guarriello N; Cooper CD
    J Air Waste Manag Assoc; 2009 Aug; 59(8):925-35. PubMed ID: 19728486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric modeling to assess wind dependence in tracer dilution method measurements of landfill methane emissions.
    Taylor DM; Chow FK; Delkash M; Imhoff PT
    Waste Manag; 2018 Mar; 73():197-209. PubMed ID: 29103898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localizing gaseous fugitive emission sources by combining real-time optical remote sensing and wind data.
    Hashmonay RA; Yost MG
    J Air Waste Manag Assoc; 1999 Nov; 49(11):1374-9. PubMed ID: 10589296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.