These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 20438628)

  • 1. Identifying essential genes in bacterial metabolic networks with machine learning methods.
    Plaimas K; Eils R; König R
    BMC Syst Biol; 2010 May; 4():56. PubMed ID: 20438628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the predictability of essential genes across distantly related organisms using an integrative approach.
    Deng J; Deng L; Su S; Zhang M; Lin X; Wei L; Minai AA; Hassett DJ; Lu LJ
    Nucleic Acids Res; 2011 Feb; 39(3):795-807. PubMed ID: 20870748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the identification of essential genes using targeted genome sequencing and comparative analysis.
    Gustafson AM; Snitkin ES; Parker SC; DeLisi C; Kasif S
    BMC Genomics; 2006 Oct; 7():265. PubMed ID: 17052348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting essential genes based on network and sequence analysis.
    Hwang YC; Lin CC; Chang JY; Mori H; Juan HF; Huang HC
    Mol Biosyst; 2009 Dec; 5(12):1672-8. PubMed ID: 19452048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning based analyses on metabolic networks supports high-throughput knockout screens.
    Plaimas K; Mallm JP; Oswald M; Svara F; Sourjik V; Eils R; König R
    BMC Syst Biol; 2008 Jul; 2():67. PubMed ID: 18652654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tapping into Salmonella typhimurium LT2 genome in a quest to explore its therapeutic arsenal: A metabolic network modeling approach.
    Mehla K; Ramana J
    Biomed Pharmacother; 2017 Feb; 86():57-66. PubMed ID: 27939520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-based information-theoretic features for gene essentiality prediction.
    Nigatu D; Sobetzko P; Yousef M; Henkel W
    BMC Bioinformatics; 2017 Nov; 18(1):473. PubMed ID: 29121868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction.
    Raghunathan A; Reed J; Shin S; Palsson B; Daefler S
    BMC Syst Biol; 2009 Apr; 3():38. PubMed ID: 19356237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconciling high-throughput gene essentiality data with metabolic network reconstructions.
    Blazier AS; Papin JA
    PLoS Comput Biol; 2019 Apr; 15(4):e1006507. PubMed ID: 30973869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-level multi-scale approach to study essential genes in Mycobacterium tuberculosis.
    Ghosh S; Baloni P; Mukherjee S; Anand P; Chandra N
    BMC Syst Biol; 2013 Dec; 7():132. PubMed ID: 24308365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated machine-learning model to predict prokaryotic essential genes.
    Deng J
    Methods Mol Biol; 2015; 1279():137-51. PubMed ID: 25636617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential drug targets in Salmonella enterica sv. Typhimurium using metabolic modelling and experimental validation.
    Hartman HB; Fell DA; Rossell S; Jensen PR; Woodward MJ; Thorndahl L; Jelsbak L; Olsen JE; Raghunathan A; Daefler S; Poolman MG
    Microbiology (Reading); 2014 Jun; 160(Pt 6):1252-1266. PubMed ID: 24777662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Machine Learning Approach for Predicting Essentiality of Metabolic Genes.
    Freischem LJ; Oyarzún DA
    Methods Mol Biol; 2024; 2760():345-369. PubMed ID: 38468098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential gene prediction using limited gene essentiality information-An integrative semi-supervised machine learning strategy.
    Nandi S; Ganguli P; Sarkar RR
    PLoS One; 2020; 15(11):e0242943. PubMed ID: 33253254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three factors underlying incorrect in silico predictions of essential metabolic genes.
    Becker SA; Palsson BO
    BMC Syst Biol; 2008 Feb; 2():14. PubMed ID: 18248675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making life difficult for Clostridium difficile: augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization.
    Kashaf SS; Angione C; Lió P
    BMC Syst Biol; 2017 Feb; 11(1):25. PubMed ID: 28209199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.
    Nandi S; Subramanian A; Sarkar RR
    Mol Biosyst; 2017 Jul; 13(8):1584-1596. PubMed ID: 28671706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Bacterial Essential Genes Based on a Feature-Integrated Method.
    Lin Y; Zhang FZ; Xue K; Gao YZ; Guo FB
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1274-1279. PubMed ID: 28212095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel proposal of a simplified bacterial gene set and the neo-construction of a general minimized metabolic network.
    Ye YN; Ma BG; Dong C; Zhang H; Chen LL; Guo FB
    Sci Rep; 2016 Oct; 6():35082. PubMed ID: 27713529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.