These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 20438647)
21. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. Raghava GP; Han JH BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999 [TBL] [Abstract][Full Text] [Related]
22. DeepSF: deep convolutional neural network for mapping protein sequences to folds. Hou J; Adhikari B; Cheng J Bioinformatics; 2018 Apr; 34(8):1295-1303. PubMed ID: 29228193 [TBL] [Abstract][Full Text] [Related]
23. Protein structure and fold prediction using Tree-Augmented naïve Bayesian classifier. Chinnasamy A; Sung WK; Mittal A J Bioinform Comput Biol; 2005 Aug; 3(4):803-19. PubMed ID: 16078362 [TBL] [Abstract][Full Text] [Related]
24. Folding RaCe: a robust method for predicting changes in protein folding rates upon point mutations. Chaudhary P; Naganathan AN; Gromiha MM Bioinformatics; 2015 Jul; 31(13):2091-7. PubMed ID: 25686635 [TBL] [Abstract][Full Text] [Related]
25. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence. Yuan Z BMC Bioinformatics; 2005 Oct; 6():248. PubMed ID: 16221309 [TBL] [Abstract][Full Text] [Related]
26. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles. Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915 [TBL] [Abstract][Full Text] [Related]
27. Analysis and prediction of protein folding rates using quadratic response surface models. Huang LT; Gromiha MM J Comput Chem; 2008 Jul; 29(10):1675-83. PubMed ID: 18351617 [TBL] [Abstract][Full Text] [Related]
28. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences. Kurgan L; Cios K; Chen K BMC Bioinformatics; 2008 May; 9():226. PubMed ID: 18452616 [TBL] [Abstract][Full Text] [Related]
29. Folding rate prediction using n-order contact distance for proteins with two- and three-state folding kinetics. Zhang L; Sun T Biophys Chem; 2005 Jan; 113(1):9-16. PubMed ID: 15617806 [TBL] [Abstract][Full Text] [Related]
30. Hierarchical learning architecture with automatic feature selection for multiclass protein fold classification. Huang CD; Lin CT; Pal NR IEEE Trans Nanobioscience; 2003 Dec; 2(4):221-32. PubMed ID: 15376912 [TBL] [Abstract][Full Text] [Related]
31. Prediction of RNA binding sites in proteins from amino acid sequence. Terribilini M; Lee JH; Yan C; Jernigan RL; Honavar V; Dobbs D RNA; 2006 Aug; 12(8):1450-62. PubMed ID: 16790841 [TBL] [Abstract][Full Text] [Related]
32. The MULTICOM toolbox for protein structure prediction. Cheng J; Li J; Wang Z; Eickholt J; Deng X BMC Bioinformatics; 2012 Apr; 13():65. PubMed ID: 22545707 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. Bagos PG; Liakopoulos TD; Hamodrakas SJ BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112 [TBL] [Abstract][Full Text] [Related]
34. Multiple contact network is a key determinant to protein folding rates. Gromiha MM J Chem Inf Model; 2009 Apr; 49(4):1130-5. PubMed ID: 19338373 [TBL] [Abstract][Full Text] [Related]
35. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments. Zheng C; Kurgan L BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492 [TBL] [Abstract][Full Text] [Related]
36. Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility. Gao J; Zhang T; Zhang H; Shen S; Ruan J; Kurgan L Proteins; 2010 Jul; 78(9):2114-30. PubMed ID: 20455267 [TBL] [Abstract][Full Text] [Related]
37. State-of-the-art bioinformatics protein structure prediction tools (Review). Pavlopoulou A; Michalopoulos I Int J Mol Med; 2011 Sep; 28(3):295-310. PubMed ID: 21617841 [TBL] [Abstract][Full Text] [Related]
38. NNcon: improved protein contact map prediction using 2D-recursive neural networks. Tegge AN; Wang Z; Eickholt J; Cheng J Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W515-8. PubMed ID: 19420062 [TBL] [Abstract][Full Text] [Related]
39. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier. Xia J; Peng Z; Qi D; Mu H; Yang J Bioinformatics; 2017 Mar; 33(6):863-870. PubMed ID: 28039166 [TBL] [Abstract][Full Text] [Related]
40. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines. Cao R; Wang Z; Wang Y; Cheng J BMC Bioinformatics; 2014 Apr; 15():120. PubMed ID: 24776231 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]