These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 20438772)
1. Enhanced cellulose degradation by nano-complexed enzymes: Synergism between a scaffold-linked exoglucanase and a free endoglucanase. Moraïs S; Heyman A; Barak Y; Caspi J; Wilson DB; Lamed R; Shoseyov O; Bayer EA J Biotechnol; 2010 Jun; 147(3-4):205-11. PubMed ID: 20438772 [TBL] [Abstract][Full Text] [Related]
2. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency. Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714 [TBL] [Abstract][Full Text] [Related]
3. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975 [TBL] [Abstract][Full Text] [Related]
4. Multiple display of catalytic modules on a protein scaffold: nano-fabrication of enzyme particles. Heyman A; Barak Y; Caspi J; Wilson DB; Altman A; Bayer EA; Shoseyov O J Biotechnol; 2007 Sep; 131(4):433-9. PubMed ID: 17826857 [TBL] [Abstract][Full Text] [Related]
5. Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Caspi J; Barak Y; Haimovitz R; Irwin D; Lamed R; Wilson DB; Bayer EA Appl Environ Microbiol; 2009 Dec; 75(23):7335-42. PubMed ID: 19820154 [TBL] [Abstract][Full Text] [Related]
6. Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Caspi J; Barak Y; Haimovitz R; Gilary H; Irwin DC; Lamed R; Wilson DB; Bayer EA Syst Synth Biol; 2010 Sep; 4(3):193-201. PubMed ID: 21886683 [TBL] [Abstract][Full Text] [Related]
7. Functional asymmetry in cohesin binding belies inherent symmetry of the dockerin module: insight into cellulosome assembly revealed by systematic mutagenesis. Karpol A; Barak Y; Lamed R; Shoham Y; Bayer EA Biochem J; 2008 Mar; 410(2):331-8. PubMed ID: 18021074 [TBL] [Abstract][Full Text] [Related]
8. Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A). Sakka K; Kishino Y; Sugihara Y; Jindou S; Sakka M; Inagaki M; Kimura T; Sakka K FEMS Microbiol Lett; 2009 Nov; 300(2):249-55. PubMed ID: 19811541 [TBL] [Abstract][Full Text] [Related]
9. Cel6B of Thermobifidus fusca and a Cel5-CBM6 of Ruminococcus albus containing a cellulose binding site show synergistic effect on hydrolysis of native plant cellulose. Bae HJ; Turcotte G; Soo Kim Y; Vézina LP; Laberge S FEMS Microbiol Lett; 2004 Apr; 233(2):325-31. PubMed ID: 15063503 [TBL] [Abstract][Full Text] [Related]
10. Engineering a reversible, high-affinity system for efficient protein purification based on the cohesin-dockerin interaction. Karpol A; Kantorovich L; Demishtein A; Barak Y; Morag E; Lamed R; Bayer EA J Mol Recognit; 2009; 22(2):91-8. PubMed ID: 18979459 [TBL] [Abstract][Full Text] [Related]
11. Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca. Posta K; Béki E; Wilson DB; Kukolya J; Hornok L J Basic Microbiol; 2004; 44(5):383-99. PubMed ID: 15378527 [TBL] [Abstract][Full Text] [Related]
12. Molecular engineering of the cellulosome complex for affinity and bioenergy applications. Nordon RE; Craig SJ; Foong FC Biotechnol Lett; 2009 Apr; 31(4):465-76. PubMed ID: 19116695 [TBL] [Abstract][Full Text] [Related]
13. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes. Cha J; Matsuoka S; Chan H; Yukawa H; Inui M; Doi RH J Microbiol Biotechnol; 2007 Nov; 17(11):1782-8. PubMed ID: 18092461 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286 [TBL] [Abstract][Full Text] [Related]
15. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Kim DM; Umetsu M; Takai K; Matsuyama T; Ishida N; Takahashi H; Asano R; Kumagai I Small; 2011 Mar; 7(5):656-64. PubMed ID: 21290602 [TBL] [Abstract][Full Text] [Related]
17. Insights into enhanced thermostability of a cellulosomal enzyme. Stern J; Anbar M; Moraïs S; Lamed R; Bayer EA Carbohydr Res; 2014 May; 389():78-84. PubMed ID: 24680546 [TBL] [Abstract][Full Text] [Related]
18. Analysis of cohesin-dockerin interactions using mutant dockerin proteins. Sakka K; Sugihara Y; Jindou S; Sakka M; Inagaki M; Sakka K; Kimura T FEMS Microbiol Lett; 2011 Jan; 314(1):75-80. PubMed ID: 21054503 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932 [TBL] [Abstract][Full Text] [Related]
20. Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. Haimovitz R; Barak Y; Morag E; Voronov-Goldman M; Shoham Y; Lamed R; Bayer EA Proteomics; 2008 Mar; 8(5):968-79. PubMed ID: 18219699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]