These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 20439126)
1. Effect of solute stress and temperature on growth rate and TRI5 gene expression using real time RT-PCR in Fusarium graminearum from Spanish wheat. Marín P; Jurado M; Magan N; Vázquez C; González-Jaén MT Int J Food Microbiol; 2010 Jun; 140(2-3):169-74. PubMed ID: 20439126 [TBL] [Abstract][Full Text] [Related]
2. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Ilgen P; Hadeler B; Maier FJ; Schäfer W Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066 [TBL] [Abstract][Full Text] [Related]
3. Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes of Fusarium graminearum induced by Tri5 gene deletion. Chen F; Zhang J; Song X; Yang J; Li H; Tang H; Liao YC J Proteome Res; 2011 May; 10(5):2273-85. PubMed ID: 21413710 [TBL] [Abstract][Full Text] [Related]
5. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. Marín P; Magan N; Vázquez C; González-Jaén MT FEMS Microbiol Ecol; 2010 Aug; 73(2):303-11. PubMed ID: 20491926 [TBL] [Abstract][Full Text] [Related]
6. Growth rate and TRI5 gene expression profiles of Fusarium equiseti strains isolated from Spanish cereals cultivated on wheat and barley media at different environmental conditions. Marín P; Jurado M; González-Jaén MT Int J Food Microbiol; 2015 Feb; 195():40-7. PubMed ID: 25500278 [TBL] [Abstract][Full Text] [Related]
7. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Hope R; Aldred D; Magan N Lett Appl Microbiol; 2005; 40(4):295-300. PubMed ID: 15752221 [TBL] [Abstract][Full Text] [Related]
8. The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Zhou X; Heyer C; Choi YE; Mehrabi R; Xu JR Fungal Genet Biol; 2010 Feb; 47(2):143-51. PubMed ID: 19909822 [TBL] [Abstract][Full Text] [Related]
10. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Ramirez ML; Chulze S; Magan N Int J Food Microbiol; 2006 Feb; 106(3):291-6. PubMed ID: 16236377 [TBL] [Abstract][Full Text] [Related]
11. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Merhej J; Richard-Forget F; Barreau C Fungal Genet Biol; 2011 Mar; 48(3):275-84. PubMed ID: 21126599 [TBL] [Abstract][Full Text] [Related]
12. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Boutigny AL; Barreau C; Atanasova-Penichon V; Verdal-Bonnin MN; Pinson-Gadais L; Richard-Forget F Mycol Res; 2009; 113(Pt 6-7):746-53. PubMed ID: 19249362 [TBL] [Abstract][Full Text] [Related]
13. Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Stephens AE; Gardiner DM; White RG; Munn AL; Manners JM Mol Plant Microbe Interact; 2008 Dec; 21(12):1571-81. PubMed ID: 18986253 [TBL] [Abstract][Full Text] [Related]
14. [Isolation and toxogenic characterization of tri5 positive Fusarium from poultry houses]. Ouyang Y; Sun X; Wang Y; Li J; Wei F; Lü G Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):805-10. PubMed ID: 21866706 [TBL] [Abstract][Full Text] [Related]
15. Stress induction of mycotoxin biosynthesis genes by abiotic factors. Schmidt-Heydt M; Magan N; Geisen R FEMS Microbiol Lett; 2008 Jul; 284(2):142-9. PubMed ID: 18510557 [TBL] [Abstract][Full Text] [Related]
16. Quantification of Tri5 gene, expression, and deoxynivalenol production during the malting of barley. Vegi A; Schwarz P; Wolf-Hall CE Int J Food Microbiol; 2011 Nov; 150(2-3):150-6. PubMed ID: 21871683 [TBL] [Abstract][Full Text] [Related]
17. Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. Ochiai N; Tokai T; Takahashi-Ando N; Fujimura M; Kimura M FEMS Microbiol Lett; 2007 Oct; 275(1):53-61. PubMed ID: 17711459 [TBL] [Abstract][Full Text] [Related]
18. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. Jiao F; Kawakami A; Nakajima T FEMS Microbiol Lett; 2008 Aug; 285(2):212-9. PubMed ID: 18564338 [TBL] [Abstract][Full Text] [Related]
19. Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. Doohan FM; Weston G; Rezanoor HN; Parry DW; Nicholson P Appl Environ Microbiol; 1999 Sep; 65(9):3850-4. PubMed ID: 10473385 [TBL] [Abstract][Full Text] [Related]
20. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]