These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20439136)

  • 41. Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: determination of column capacity.
    Aksu Z; Cağatay SS; Gönen F
    J Hazard Mater; 2007 May; 143(1-2):362-71. PubMed ID: 17070992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles.
    Sha Y; Mathew I; Cui Q; Clay M; Gao F; Zhang XJ; Gu Z
    Chemosphere; 2016 Feb; 144():1530-5. PubMed ID: 26498101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Equilibrium and molecular mechanism of anionic dyes adsorption onto copper(II) complex of dithiocarbamate-modified starch.
    Cheng R; Ou S; Xiang B; Li Y; Liao Q
    Langmuir; 2010 Jan; 26(2):752-8. PubMed ID: 20027997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The comparison of photooxidation processes for the minimization of organic load of colored wastewater applying the response surface methodology.
    Kusic H; Jovic M; Kos N; Koprivanac N; Marin V
    J Hazard Mater; 2010 Nov; 183(1-3):189-202. PubMed ID: 20674163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reaction site and mechanism in the UV or visible light induced TiO2 photodegradation of Orange G.
    Yang SY; Lou LP; Wu XN; Chen YX
    J Environ Sci (China); 2006; 18(1):180-3. PubMed ID: 20050570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study.
    Sun SP; Li CJ; Sun JH; Shi SH; Fan MH; Zhou Q
    J Hazard Mater; 2009 Jan; 161(2-3):1052-7. PubMed ID: 18538927
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discoloration and mineralization of Orange II by using a bentonite clay-based Fe nanocomposite film as a heterogeneous photo-Fenton catalyst.
    Feng J; Hu X; Yue PL
    Water Res; 2005 Jan; 39(1):89-96. PubMed ID: 15607168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on degradation of reactive textile dyes solution by electrochemical method.
    Kariyajjanavar P; Jogttappa N; Nayaka YA
    J Hazard Mater; 2011 Jun; 190(1-3):952-61. PubMed ID: 21536376
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution.
    Tsai WT; Hsien KJ; Hsu HC; Lin CM; Lin KY; Chiu CH
    Bioresour Technol; 2008 Apr; 99(6):1623-9. PubMed ID: 17543519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sonoelectrochemical oxidation for decolorization of Reactive Red 195.
    Somayajula A; Asaithambi P; Susree M; Matheswaran M
    Ultrason Sonochem; 2012 Jul; 19(4):803-11. PubMed ID: 22261471
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst.
    Feng J; Hu X; Yue PL
    Water Res; 2006 Feb; 40(4):641-6. PubMed ID: 16448683
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions.
    Baran W; Makowski A; Wardas W
    Chemosphere; 2003 Oct; 53(1):87-95. PubMed ID: 12892670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photooxidation processes for an azo dye in aqueous media: modeling of degradation kinetic and ecological parameters evaluation.
    Kusic H; Juretic D; Koprivanac N; Marin V; Božić AL
    J Hazard Mater; 2011 Jan; 185(2-3):1558-68. PubMed ID: 21093983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media.
    Silva AC; Pic JS; Sant'Anna GL; Dezotti M
    J Hazard Mater; 2009 Sep; 169(1-3):965-71. PubMed ID: 19443113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of experimental design methodology to the decolorization of Orange II using low iron concentration of photoelectro-Fenton process.
    Zhang H; Li Y; Zhong X; Ran X
    Water Sci Technol; 2011; 63(7):1373-80. PubMed ID: 21508539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorptive performance of penta-bismuth hepta-oxide nitrate, Bi₅O₇NO₃, for removal of methyl orange dye.
    Abdullah AH; Abdullah EA; Zainal Z; Hussein MZ; Ban TK
    Water Sci Technol; 2012; 65(9):1632-8. PubMed ID: 22508126
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology.
    Zhang Z; Zheng H
    J Hazard Mater; 2009 Dec; 172(2-3):1388-93. PubMed ID: 19717231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advanced oxidation processes in azo dye wastewater treatment.
    Papić S; Koprivanac N; Bozić AL; Vujević D; Dragicević SK; Kusić H; Peternel I
    Water Environ Res; 2006 Jun; 78(6):572-9. PubMed ID: 16894983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica.
    Donia AM; Atia AA; Al-Amrani WA; El-Nahas AM
    J Hazard Mater; 2009 Jan; 161(2-3):1544-50. PubMed ID: 18583037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of Orange II by Fenton reaction using ilmenite as catalyst.
    Pataquiva-Mateus AY; Zea HR; Ramirez JH
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6187-6194. PubMed ID: 27519898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.