These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20439267)

  • 21. Interaction of microstructure and microcrack growth in cortical bone: a finite element study.
    Mischinski S; Ural A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.
    Sansalone V; Gagliardi D; Desceliers C; Bousson V; Laredo JD; Peyrin F; Haïat G; Naili S
    Biomech Model Mechanobiol; 2016 Feb; 15(1):111-31. PubMed ID: 26202170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fracture risk assessment model of the femur in children with osteogenesis imperfecta (OI) during gait.
    Fritz JM; Guan Y; Wang M; Smith PA; Harris GF
    Med Eng Phys; 2009 Nov; 31(9):1043-8. PubMed ID: 19683956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative analysis of different treatments for distal femur fractures using the finite element method.
    Cegoñino J; García Aznar JM; Doblaré M; Palanca D; Seral B; Seral F
    Comput Methods Biomech Biomed Engin; 2004 Oct; 7(5):245-56. PubMed ID: 15621647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of the multifactorial causes of atypical femoral fractures using a novel multiscale finite element approach.
    Demirtas A; Rajapakse CS; Ural A
    Bone; 2020 Jun; 135():115318. PubMed ID: 32173503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone.
    Pérez MA; Fornells P; Doblaré M; García-Aznar JM
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):71-80. PubMed ID: 19697182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite element analysis of a bone-implant system with the proximal femur nail.
    Helwig P; Faust G; Hindenlang U; Kröplin B; Eingartner C
    Technol Health Care; 2006; 14(4-5):411-9. PubMed ID: 17065762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Femoral geometry as a risk factor for osteoporotic hip fracture in men and women.
    Gregory JS; Aspden RM
    Med Eng Phys; 2008 Dec; 30(10):1275-86. PubMed ID: 18976949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element prediction of proximal femoral fracture patterns under different loads.
    Gómez-Benito MJ; García-Aznar JM; Doblaré M
    J Biomech Eng; 2005 Feb; 127(1):9-14. PubMed ID: 15868783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Colles' fracture load in human radius using cohesive finite element modeling.
    Ural A
    J Biomech; 2009 Jan; 42(1):22-8. PubMed ID: 19056085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.
    Marco M; Giner E; Larraínzar-Garijo R; Caeiro JR; Miguélez MH
    Ann Biomed Eng; 2017 Oct; 45(10):2395-2408. PubMed ID: 28639173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patient-specific modelling of bone and bone-implant systems: the challenges.
    Pankaj P
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):233-49. PubMed ID: 23281281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading.
    Cheung G; Zalzal P; Bhandari M; Spelt JK; Papini M
    Med Eng Phys; 2004 Mar; 26(2):93-108. PubMed ID: 15036177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system.
    Leslie WD; Lix LM;
    J Bone Miner Res; 2011 Mar; 26(3):460-7. PubMed ID: 20839285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The assessment of the risk of fracture in femora with metastatic lesions: comparing case-specific finite element analyses with predictions by clinical experts.
    Derikx LC; van Aken JB; Janssen D; Snyers A; van der Linden YM; Verdonschot N; Tanck E
    J Bone Joint Surg Br; 2012 Aug; 94(8):1135-42. PubMed ID: 22844058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss.
    Tomaszewski PK; van Diest M; Bulstra SK; Verdonschot N; Verkerke GJ
    J Biomech; 2012 Jul; 45(11):1875-80. PubMed ID: 22677337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.