BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20439412)

  • 21. Imaging cellular and molecular dynamics in live embryos using fluorescent proteins.
    Cavey M; Lecuit T
    Methods Mol Biol; 2008; 420():219-38. PubMed ID: 18641950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A live-imaging protocol to track cell movement in the 
    Chuyen A; Daian F; Pasini A; Kodjabachian L
    STAR Protoc; 2021 Dec; 2(4):100928. PubMed ID: 34778847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging zebrafish embryos by two-photon excitation time-lapse microscopy.
    Carvalho L; Heisenberg CP
    Methods Mol Biol; 2009; 546():273-87. PubMed ID: 19378110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DiI cell labeling in lamprey embryos.
    Nikitina N; Bronner-Fraser M; Sauka-Spengler T
    Cold Spring Harb Protoc; 2009 Jan; 2009(1):pdb.prot5124. PubMed ID: 20147019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards.
    Lee SC; Mietchen D; Cho JH; Kim YS; Kim C; Hong KS; Lee C; Kang D; Lee W; Cheong C
    Differentiation; 2007 Jan; 75(1):84-92. PubMed ID: 17244024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wound healing ability of Xenopus laevis embryos. I. Rapid wound closure achieved by bisectional half embryos.
    Yoshii Y; Noda M; Matsuzaki T; Ihara S
    Dev Growth Differ; 2005 Oct; 47(8):553-61. PubMed ID: 16287486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Live imaging and morphometric analysis of embryonic development in the ascidian Ciona intestinalis.
    Rhee JM; Oda-Ishii I; Passamaneck YJ; Hadjantonakis AK; Di Gregorio A
    Genesis; 2005 Nov; 43(3):136-47. PubMed ID: 16267822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulation and imaging of Kryptolebias marmoratus embryos.
    Mourabit S; Kudoh T
    Integr Comp Biol; 2012 Dec; 52(6):761-8. PubMed ID: 22593557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light sheet microscopy for real-time developmental biology.
    Weber M; Huisken J
    Curr Opin Genet Dev; 2011 Oct; 21(5):566-72. PubMed ID: 21963791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging Methods in
    Davidson LA; Lowery LA
    Cold Spring Harb Protoc; 2022 Jun; 2022(5):Pdb.top105627. PubMed ID: 34244350
    [No Abstract]   [Full Text] [Related]  

  • 32. Atomic force microscopy of living and fixed Xenopus laevis embryos.
    Efremov YM; Pukhlyakova EA; Bagrov DV; Shaitan KV
    Micron; 2011 Dec; 42(8):840-52. PubMed ID: 21724405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cellular basis of the convergence and extension of the Xenopus neural plate.
    Keller R; Shih J; Sater A
    Dev Dyn; 1992 Mar; 193(3):199-217. PubMed ID: 1600240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of Drosophila embryos for quantitative imaging of gene expression.
    Surkova S; Myasnikova E; Kozlov KN; Pisarev A; Reinitz J; Samsonova M
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):533-6. PubMed ID: 23734021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis.
    Suzawa K; Yukita A; Hayata T; Goto T; Danno H; Michiue T; Cho KW; Asashima M
    Int J Dev Biol; 2007; 51(3):183-90. PubMed ID: 17486538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origins of inner ear sensory organs revealed by fate map and time-lapse analyses.
    Kil SH; Collazo A
    Dev Biol; 2001 May; 233(2):365-79. PubMed ID: 11336501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction.
    Wawersik S; Evola C; Whitman M
    Dev Biol; 2005 Jan; 277(2):425-42. PubMed ID: 15617685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging.
    Papan C; Boulat B; Velan SS; Fraser SE; Jacobs RE
    Dev Biol; 2007 May; 305(1):161-71. PubMed ID: 17368611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution.
    Ewald AJ; McBride H; Reddington M; Fraser SE; Kerschmann R
    Dev Dyn; 2002 Nov; 225(3):369-75. PubMed ID: 12412023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frizzled-10 promotes sensory neuron development in Xenopus embryos.
    Garcia-Morales C; Liu CH; Abu-Elmagd M; Hajihosseini MK; Wheeler GN
    Dev Biol; 2009 Nov; 335(1):143-55. PubMed ID: 19716814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.