BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20439498)

  • 1. Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1.
    Li M; Petteys BJ; McClure JM; Valsakumar V; Bekiranov S; Frank EL; Smith JS
    Mol Cell Biol; 2010 Jul; 30(13):3329-41. PubMed ID: 20439498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of functional sirtuin chromatin targets in yeast.
    Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS
    Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The histone deacetylases Rpd3 and Hst1 antagonistically regulate de novo NAD
    Groth B; Huang CC; Lin SJ
    J Biol Chem; 2022 Oct; 298(10):102410. PubMed ID: 36007612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes.
    McCord R; Pierce M; Xie J; Wonkatal S; Mickel C; Vershon AK
    Mol Cell Biol; 2003 Mar; 23(6):2009-16. PubMed ID: 12612074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase.
    Weber JM; Irlbacher H; Ehrenhofer-Murray AE
    BMC Mol Biol; 2008 Nov; 9():100. PubMed ID: 18990212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate
    James Theoga Raj C; Croft T; Venkatakrishnan P; Groth B; Dhugga G; Cater T; Lin SJ
    J Biol Chem; 2019 Apr; 294(14):5562-5575. PubMed ID: 30760525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases.
    Mead J; McCord R; Youngster L; Sharma M; Gartenberg MR; Vershon AK
    Mol Cell Biol; 2007 Apr; 27(7):2466-75. PubMed ID: 17242192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae.
    Nosaka K; Onozuka M; Konno H; Kawasaki Y; Nishimura H; Sano M; Akaji K
    Mol Microbiol; 2005 Oct; 58(2):467-79. PubMed ID: 16194233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae.
    Hickman MA; Rusche LN
    PLoS Genet; 2007 Aug; 3(8):e126. PubMed ID: 17676954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyruvate decarboxylase and thiamine biosynthetic genes are regulated differently by Pdc2 in S. cerevisiae and C. glabrata.
    Iosue CL; Ugras JM; Bajgain Y; Dottor CA; Stauffer PL; Hopkins RA; Lang EC; Wykoff DD
    PLoS One; 2023; 18(6):e0286744. PubMed ID: 37285346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae.
    Mojzita D; Hohmann S
    Mol Genet Genomics; 2006 Aug; 276(2):147-61. PubMed ID: 16850348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae.
    Kang WK; Devare M; Kim JY
    J Microbiol; 2017 Feb; 55(2):123-129. PubMed ID: 28120189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition.
    Sauve AA; Moir RD; Schramm VL; Willis IM
    Mol Cell; 2005 Feb; 17(4):595-601. PubMed ID: 15721262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae.
    Bedalov A; Hirao M; Posakony J; Nelson M; Simon JA
    Mol Cell Biol; 2003 Oct; 23(19):7044-54. PubMed ID: 12972620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex.
    Sutton A; Heller RC; Landry J; Choy JS; Sirko A; Sternglanz R
    Mol Cell Biol; 2001 May; 21(10):3514-22. PubMed ID: 11313477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization and preliminary crystallographic studies of the NAD+-dependent deacetylase HST1 from Saccharomyces cerevisiae.
    Zhu Y; Teng M; Li X
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Dec; 67(Pt 12):1579-81. PubMed ID: 22139171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD
    Groth B; Lee YC; Huang CC; McDaniel M; Huang K; Lee LH; Lin SJ
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress.
    Simoneau A; Ricard É; Weber S; Hammond-Martel I; Wong LH; Sellam A; Giaever G; Nislow C; Raymond M; Wurtele H
    Nucleic Acids Res; 2016 Apr; 44(6):2706-26. PubMed ID: 26748095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program.
    Pijnappel WW; Schaft D; Roguev A; Shevchenko A; Tekotte H; Wilm M; Rigaut G; Séraphin B; Aasland R; Stewart AF
    Genes Dev; 2001 Nov; 15(22):2991-3004. PubMed ID: 11711434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.