BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 20439718)

  • 1. Ohnologs in the human genome are dosage balanced and frequently associated with disease.
    Makino T; McLysaght A
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9270-4. PubMed ID: 20439718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide deserts for copy number variation in vertebrates.
    Makino T; McLysaght A; Kawata M
    Nat Commun; 2013; 4():2283. PubMed ID: 23917329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
    Singh PP; Isambert H
    Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the expansion of "dangerous" gene repertoires by whole-genome duplications in early vertebrates.
    Singh PP; Affeldt S; Cascone I; Selimoglu R; Camonis J; Isambert H
    Cell Rep; 2012 Nov; 2(5):1387-98. PubMed ID: 23168259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates.
    Bu L; Bergthorsson U; Katju V
    BMC Evol Biol; 2011 Sep; 11():279. PubMed ID: 21955875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function relaxation followed by diversifying selection after whole-genome duplication in flowering plants.
    Guo H; Lee TH; Wang X; Paterson AH
    Plant Physiol; 2013 Jun; 162(2):769-78. PubMed ID: 23580595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Colocalization of Human Ohnolog Pairs Acts to Maintain Dosage-Balance.
    Xie T; Yang QY; Wang XT; McLysaght A; Zhang HY
    Mol Biol Evol; 2016 Sep; 33(9):2368-75. PubMed ID: 27297469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-phase resolution of polyploidy in the Arabidopsis metabolic network gives rise to relative and absolute dosage constraints.
    Bekaert M; Edger PP; Pires JC; Conant GC
    Plant Cell; 2011 May; 23(5):1719-28. PubMed ID: 21540436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locally duplicated ohnologs evolve faster than nonlocally duplicated ohnologs in Arabidopsis and rice.
    Wang Y
    Genome Biol Evol; 2013; 5(2):362-9. PubMed ID: 23362157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do disparate mechanisms of duplication add similar genes to the genome?
    Davis JC; Petrov DA
    Trends Genet; 2005 Oct; 21(10):548-51. PubMed ID: 16098632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.
    Singh PP; Arora J; Isambert H
    PLoS Comput Biol; 2015 Jul; 11(7):e1004394. PubMed ID: 26181593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication.
    Gillard GB; Grønvold L; Røsæg LL; Holen MM; Monsen Ø; Koop BF; Rondeau EB; Gundappa MK; Mendoza J; Macqueen DJ; Rohlfs RV; Sandve SR; Hvidsten TR
    Genome Biol; 2021 Apr; 22(1):103. PubMed ID: 33849620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of Causative Genes for Alzheimer's Disease Due to Dosage Imbalance.
    Sekine M; Makino T
    Mol Biol Evol; 2017 Sep; 34(9):2396-2407. PubMed ID: 28666362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positionally biased gene loss after whole genome duplication: evidence from human, yeast, and plant.
    Makino T; McLysaght A
    Genome Res; 2012 Dec; 22(12):2427-35. PubMed ID: 22835904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Gene Loss following Ancient Whole-Genome Duplication in the Cryptic Paramecium Complex.
    Gout JF; Hao Y; Johri P; Arnaiz O; Doak TG; Bhullar S; Couloux A; Guérin F; Malinsky S; Potekhin A; Sawka N; Sperling L; Labadie K; Meyer E; Duharcourt S; Lynch M
    Mol Biol Evol; 2023 May; 40(5):. PubMed ID: 37154524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of protein interactions and regulatory divergence in yeast whole-genome duplicates.
    Vinogradov AE; Anatskaya OV
    Genomics; 2009 Jun; 93(6):534-42. PubMed ID: 19272438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ohnologs and SSD Paralogs Differ in Genomic and Expression Features Related to Dosage Constraints.
    Vance Z; McLysaght A
    Genome Biol Evol; 2023 Oct; 15(10):. PubMed ID: 37776514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes.
    Vilardell M; Rasche A; Thormann A; Maschke-Dutz E; Pérez-Jurado LA; Lehrach H; Herwig R
    BMC Genomics; 2011 May; 12():229. PubMed ID: 21569303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.