BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 204399)

  • 21. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of experimentally induced serotonin deficiency by tryptophan depletion on sleep EEG in healthy subjects.
    Voderholzer U; Hornyak M; Thiel B; Huwig-Poppe C; Kiemen A; König A; Backhaus J; Riemann D; Berger M; Hohagen F
    Neuropsychopharmacology; 1998 Feb; 18(2):112-24. PubMed ID: 9430135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals.
    Strecker RE; Thakkar MM; Porkka-Heiskanen T; Dauphin LJ; Bjørkum AA; McCarley RW
    Sleep Res Online; 1999; 2(2):21-7. PubMed ID: 11421239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sleep in the Cape Mole Rat: A Short-Sleeping Subterranean Rodent.
    Kruger JL; Gravett N; Bhagwandin A; Bennett NC; Archer EK; Manger PR
    Brain Behav Evol; 2016; 87(2):78-87. PubMed ID: 27088160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tryptophan depletion test. Impact on sleep in healthy subjects and patients with obsessive-compulsive disorder.
    Huwig-Poppe C; Voderholzer U; Backhaus J; Riemann D; König A; Hohagen F
    Adv Exp Med Biol; 1999; 467():35-42. PubMed ID: 10721036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of partial deprivation of slow-wave sleep on the structure of the sleep-wakefulness cycle].
    Oniani TN; Chidzhavadze EO; Maĭsuradze LM
    Fiziol Zh SSSR Im I M Sechenova; 1984 Aug; 70(8):1142-8. PubMed ID: 6500085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-linear analysis of the sleep EEG.
    Kobayashi T; Misaki K; Nakagawa H; Madokoro S; Ihara H; Tsuda K; Umezawa Y; Murayama J; Isaki K
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):159-61. PubMed ID: 10459677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circulating neurotransmitters during the different wake-sleep stages in normal subjects.
    Lechin F; Pardey-Maldonado B; van der Dijs B; Benaim M; Baez S; Orozco B; Lechin AE
    Psychoneuroendocrinology; 2004 Jun; 29(5):669-85. PubMed ID: 15041088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats.
    Valjakka A; Vartiainen J; Tuomisto L; Tuomisto JT; Olkkonen H; Airaksinen MM
    Brain Res Bull; 1998 Sep; 47(2):171-84. PubMed ID: 9820735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Event-related potentials (ERPs) to deviant auditory stimuli during sleep and waking.
    Nordby H; Hugdahl K; Stickgold R; Bronnick KS; Hobson JA
    Neuroreport; 1996 Apr; 7(5):1082-6. PubMed ID: 8804056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.
    Sakai K
    Neuroscience; 2014 Feb; 260():249-64. PubMed ID: 24355494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Role of the paradoxical stage in the organization of the sleep--wakefulness cycle in rats].
    Karmanova IG; Maksimuk VF; Panov AN; Rubinskaia NL; Khomutetskaia OE
    Fiziol Zh SSSR Im I M Sechenova; 1978 Aug; 64(8):1074-81. PubMed ID: 211051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Local temperature characteristics of the isolated cortex in wakefulness and alteration of the sleep stages].
    Bogoslovskiĭ MM; Krasil'nikov VG; Tseshke G; Al'bertin SV
    Fiziol Zh SSSR Im I M Sechenova; 1977 Dec; 63(12):1631-7. PubMed ID: 202512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans.
    Gross DW; Gotman J
    Neuroscience; 1999; 94(4):1005-18. PubMed ID: 10625043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prenatal protein malnourished rats show changes in sleep/wake behavior as adults.
    Datta S; Patterson EH; Vincitore M; Tonkiss J; Morgane PJ; Galler JR
    J Sleep Res; 2000 Mar; 9(1):71-9. PubMed ID: 10733692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rat as an experimental model for sleep neurophysiology.
    Datta S; Hobson JA
    Behav Neurosci; 2000 Dec; 114(6):1239-44. PubMed ID: 11142656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies.
    Portas CM; Bjorvatn B; Ursin R
    Prog Neurobiol; 2000 Jan; 60(1):13-35. PubMed ID: 10622375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sleep homeostasis in rats assessed by a long-term intermittent paradoxical sleep deprivation protocol.
    Machado RB; Suchecki D; Tufik S
    Behav Brain Res; 2005 May; 160(2):356-64. PubMed ID: 15863232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. c-Fos expression in the limbic thalamus following thermoregulatory and wake-sleep changes in the rat.
    Luppi M; Cerri M; Di Cristoforo A; Hitrec T; Dentico D; Del Vecchio F; Martelli D; Perez E; Tupone D; Zamboni G; Amici R
    Exp Brain Res; 2019 Jun; 237(6):1397-1407. PubMed ID: 30887077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.