BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20441140)

  • 1. Biocompatibility of plasma enhanced chemical vapor deposited poly(2-hydroxyethyl methacrylate) films for biomimetic replication of the intestinal basement membrane.
    Pfluger CA; Burkey DD; Wang L; Sun B; Ziemer KS; Carrier RL
    Biomacromolecules; 2010 Jun; 11(6):1579-84. PubMed ID: 20441140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinitiated chemical vapor deposition of cytocompatible poly(2-hydroxyethyl methacrylate) films.
    McMahon BJ; Pfluger CA; Sun B; Ziemer KS; Burkey DD; Carrier RL
    J Biomed Mater Res A; 2014 Jul; 102(7):2375-82. PubMed ID: 23852714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype.
    Wang L; Murthy SK; Fowle WH; Barabino GA; Carrier RL
    Biomaterials; 2009 Dec; 30(36):6825-34. PubMed ID: 19766306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of polymer networks with bone sialoprotein promotes cell attachment and spreading.
    Chan WD; Goldberg HA; Hunter GK; Dixon SJ; Rizkalla AS
    J Biomed Mater Res A; 2010 Sep; 94(3):945-52. PubMed ID: 20730931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHEMA hydrogels modified through the grafting of phosphate groups by ATRP support the attachment and growth of human corneal epithelial cells.
    Zainuddin ; Barnard Z; Keen I; Hill DJ; Chirila TV; Harkin DG
    J Biomater Appl; 2008 Sep; 23(2):147-68. PubMed ID: 18632768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).
    Zhang B; Lalani R; Cheng F; Liu Q; Liu L
    J Biomed Mater Res A; 2011 Dec; 99(3):455-66. PubMed ID: 21887741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise, biomimetic replication of the multiscale structure of intestinal basement membrane using chemical vapor deposition.
    Pfluger CA; McMahon BJ; Carrier RL; Burkey DD
    Tissue Eng Part A; 2013 Mar; 19(5-6):649-56. PubMed ID: 23013380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering.
    Çetin D; Kahraman AS; Gümüşderelioğlu M
    J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering.
    Kubinová S; Horák D; Syková E
    Biomaterials; 2009 Sep; 30(27):4601-9. PubMed ID: 19500833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradability of poly (2-hydroxyethyl methacrylate) in the presence of the J774.2 macrophage cell line.
    Mabilleau G; Moreau MF; Filmon R; Baslé MF; Chappard D
    Biomaterials; 2004 Sep; 25(21):5155-62. PubMed ID: 15109839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.
    Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E
    J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds.
    Liu Y; Wang S; Krouse J; Kotov NA; Eghtedari M; Vargas G; Motamedi M
    J Biomed Mater Res A; 2007 Oct; 83(1):1-9. PubMed ID: 17335022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds.
    Glawe JD; Hill JB; Mills DK; McShane MJ
    J Biomed Mater Res A; 2005 Oct; 75(1):106-14. PubMed ID: 16052500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermosensitive PHEMA microcarriers: ATRP synthesis, characterization, and usabilities in cell cultures.
    Gümüşderelioğlu M; Çakmak S; Timuçin HÖ; Çakmak AS
    J Biomater Sci Polym Ed; 2013; 24(18):2110-25. PubMed ID: 23930942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(2-hydroxyethyl methacrylate)-based slabs as a mouse embryonic stem cell support.
    Horák D; Kroupová J; Slouf M; Dvorák P
    Biomaterials; 2004 Oct; 25(22):5249-60. PubMed ID: 15110476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes.
    Wang L; Murthy SK; Barabino GA; Carrier RL
    Biomaterials; 2010 Oct; 31(29):7586-98. PubMed ID: 20643478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of interconnected porous scaffolds.
    Liu X; Won Y; Ma PX
    J Biomed Mater Res A; 2005 Jul; 74(1):84-91. PubMed ID: 15937920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.