These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 20441268)
1. Tests of the RPBE, revPBE, tau-HCTHhyb, omegaB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. Yang K; Zheng J; Zhao Y; Truhlar DG J Chem Phys; 2010 Apr; 132(16):164117. PubMed ID: 20441268 [TBL] [Abstract][Full Text] [Related]
2. Density functional study of CO and NO adsorption on Ni-doped MgO(100). Valero R; Gomes JR; Truhlar DG; Illas F J Chem Phys; 2010 Mar; 132(10):104701. PubMed ID: 20232978 [TBL] [Abstract][Full Text] [Related]
3. Predicting bond dissociation energy and bond length for bimetallic diatomic molecules: a challenge for electronic structure theory. Bao JL; Zhang X; Xu X; Truhlar DG Phys Chem Chem Phys; 2017 Feb; 19(8):5839-5854. PubMed ID: 28177019 [TBL] [Abstract][Full Text] [Related]
4. Density functionals for inorganometallic and organometallic chemistry. Schultz NE; Zhao Y; Truhlar DG J Phys Chem A; 2005 Dec; 109(49):11127-43. PubMed ID: 16331896 [TBL] [Abstract][Full Text] [Related]
5. Databases for transition element bonding: metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. Schultz NE; Zhao Y; Truhlar DG J Phys Chem A; 2005 May; 109(19):4388-403. PubMed ID: 16833770 [TBL] [Abstract][Full Text] [Related]
6. The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. Xu X; Goddard WA J Chem Phys; 2004 Sep; 121(9):4068-82. PubMed ID: 15332952 [TBL] [Abstract][Full Text] [Related]
7. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Zhao Y; Schultz NE; Truhlar DG J Chem Theory Comput; 2006 Mar; 2(2):364-82. PubMed ID: 26626525 [TBL] [Abstract][Full Text] [Related]
8. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Goerigk L; Grimme S Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027 [TBL] [Abstract][Full Text] [Related]
9. Assessment and validation of density functional approximations for iron carbide and iron carbide cation. Li R; Peverati R; Isegawa M; Truhlar DG J Phys Chem A; 2013 Jan; 117(1):169-73. PubMed ID: 23240935 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. Zhao Y; Truhlar DG J Chem Theory Comput; 2008 Nov; 4(11):1849-68. PubMed ID: 26620329 [TBL] [Abstract][Full Text] [Related]
11. Density functionals with broad applicability in chemistry. Zhao Y; Truhlar DG Acc Chem Res; 2008 Feb; 41(2):157-67. PubMed ID: 18186612 [TBL] [Abstract][Full Text] [Related]
12. Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies. Tao J; Tretiak S; Zhu JX J Chem Phys; 2008 Feb; 128(8):084110. PubMed ID: 18315036 [TBL] [Abstract][Full Text] [Related]
13. Time-dependent density functional theory calculations for core-excited states: assessment of standard exchange-correlation functionals and development of a novel hybrid functional. Nakata A; Imamura Y; Otsuka T; Nakai H J Chem Phys; 2006 Mar; 124(9):94105. PubMed ID: 16526843 [TBL] [Abstract][Full Text] [Related]
14. Calculation of semiconductor band gaps with the M06-L density functional. Zhao Y; Truhlar DG J Chem Phys; 2009 Feb; 130(7):074103. PubMed ID: 19239280 [TBL] [Abstract][Full Text] [Related]
15. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. Zhao Y; Truhlar DG J Phys Chem A; 2005 Jun; 109(25):5656-67. PubMed ID: 16833898 [TBL] [Abstract][Full Text] [Related]
16. Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds. Zhang W; Truhlar DG; Tang M J Chem Theory Comput; 2013 Sep; 9(9):3965-77. PubMed ID: 26592392 [TBL] [Abstract][Full Text] [Related]
17. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Zhao Y; Truhlar DG J Chem Phys; 2006 Nov; 125(19):194101. PubMed ID: 17129083 [TBL] [Abstract][Full Text] [Related]
18. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. Zope RR; Dunlap BI J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149 [TBL] [Abstract][Full Text] [Related]
19. Assessment of new meta and hybrid meta density functionals for predicting the geometry and binding energy of a challenging system: the dimer of H2S and benzene. Leverentz HR; Truhlar DG J Phys Chem A; 2008 Jul; 112(26):6009-16. PubMed ID: 18540587 [TBL] [Abstract][Full Text] [Related]
20. Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. Zhao Y; Truhlar DG J Chem Phys; 2008 May; 128(18):184109. PubMed ID: 18532801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]