BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20441581)

  • 1. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors.
    Schwarzenberger A; Zitt A; Kroth P; Mueller S; Von Elert E
    BMC Physiol; 2010 May; 10():6. PubMed ID: 20441581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression and characterization of a novel serine protease from Daphnia magna: A possible role in susceptibility to toxic cyanobacteria.
    Lange J; Demir F; Huesgen PF; Baumann U; von Elert E; Pichlo C
    Aquat Toxicol; 2018 Dec; 205():140-147. PubMed ID: 30384195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of tolerance to cyanobacterial protease inhibitors revealed by clonal differences in Daphnia magna.
    Schwarzenberger A; Kuster CJ; Von Elert E
    Mol Ecol; 2012 Oct; 21(19):4898-911. PubMed ID: 22943151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.
    Kuster CJ; Von Elert E
    PLoS One; 2013; 8(5):e62658. PubMed ID: 23650523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive selection of digestive proteases in Daphnia: A mechanism for local adaptation to cyanobacterial protease inhibitors.
    Schwarzenberger A; Hasselmann M; Von Elert E
    Mol Ecol; 2020 Mar; 29(5):912-919. PubMed ID: 32034824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copy number variation of a protease gene of Daphnia: Its role in population tolerance.
    Schwarzenberger A; Keith NR; Jackson CE; Von Elert E
    J Exp Zool A Ecol Integr Physiol; 2017 Feb; 327(2-3):119-126. PubMed ID: 29356420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.
    Schwarzenberger A; Sadler T; Von Elert E
    J Exp Biol; 2013 Oct; 216(Pt 19):3649-55. PubMed ID: 23788705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806.
    Agrawal MK; Zitt A; Bagchi D; Weckesser J; Bagchi SN; von Elert E
    Environ Toxicol; 2005 Jun; 20(3):314-22. PubMed ID: 15892063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the genetic basis of microcystin tolerance.
    Schwarzenberger A; Sadler T; Motameny S; Ben-Khalifa K; Frommolt P; Altmüller J; Konrad K; von Elert E
    BMC Genomics; 2014 Sep; 15(1):776. PubMed ID: 25199885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible tolerance to dietary protease inhibitors in Daphnia magna.
    von Elert E; Zitt A; Schwarzenberger A
    J Exp Biol; 2012 Jun; 215(Pt 12):2051-9. PubMed ID: 22623193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target gene approaches: Gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa.
    Schwarzenberger A; Courts C; von Elert E
    BMC Genomics; 2009 Nov; 10():527. PubMed ID: 19917101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences.
    Schwarzenberger A; Fink P
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Apr; 218():23-29. PubMed ID: 29427614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjustments of serine proteases of Daphnia pulex in response to temperature changes.
    Dölling R; Becker D; Hawat S; Koch M; Schwarzenberger A; Zeis B
    Comp Biochem Physiol B Biochem Mol Biol; 2016; 194-195():1-10. PubMed ID: 26773656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative Effects of Cyanotoxins and Adaptative Responses of
    Schwarzenberger A
    Toxins (Basel); 2022 Nov; 14(11):. PubMed ID: 36356020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine kinase in the cladoceran Daphnia magna: cDNA sequencing and expression is associated with resistance to toxic Microcystis.
    Lyu K; Zhang L; Zhu X; Cui G; Wilson AE; Yang Z
    Aquat Toxicol; 2015 Mar; 160():13-21. PubMed ID: 25575127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins.
    Smutná M; Babica P; Jarque S; Hilscherová K; Maršálek B; Haeba M; Bláha L
    Toxicon; 2014 Mar; 79():11-8. PubMed ID: 24412459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daphnia populations are similar but not identical in tolerance to different protease inhibitors.
    Schwarzenberger A; Ilić M; Von Elert E
    Harmful Algae; 2021 Jun; 106():102062. PubMed ID: 34154785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of gut digestive proteases by cyanobacterial diets decreases infection in a
    Sánchez KF; von Elert E; Monell K; Calhoun S; Maisha A; McCreadie P; Duffy MA
    Ecol Evol; 2024 Apr; 14(4):e11340. PubMed ID: 38646007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary exposure of Daphnia to microcystins: no in vivo relevance of biotransformation.
    Sadler T; von Elert E
    Aquat Toxicol; 2014 May; 150():73-82. PubMed ID: 24642294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes.
    von Elert E; Agrawal MK; Gebauer C; Jaensch H; Bauer U; Zitt A
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Mar; 137(3):287-96. PubMed ID: 15050516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.