BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20441766)

  • 21. Differential interferometric particle tracking on the subnanometer- and submillisecond-scale.
    Müller D; Klopfenstein DR; Ulbrich RG
    Opt Express; 2013 Mar; 21(6):7362-72. PubMed ID: 23546120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanically driven ATP synthesis by F1-ATPase.
    Itoh H; Takahashi A; Adachi K; Noji H; Yasuda R; Yoshida M; Kinosita K
    Nature; 2004 Jan; 427(6973):465-8. PubMed ID: 14749837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of external torque on the ATP-driven rotation of F1-ATPase.
    Watanabe-Nakayama T; Toyabe S; Kudo S; Sugiyama S; Yoshida M; Muneyuki E
    Biochem Biophys Res Commun; 2008 Feb; 366(4):951-7. PubMed ID: 18083117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Torque generation through the random movement of an asymmetric rotor: A potential rotational mechanism of the γ subunit of F(1)-ATPase.
    Chou YC; Hsiao YF; Hwang GJ; To K
    Phys Rev E; 2016 Feb; 93(2):022408. PubMed ID: 26986363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope.
    Chu SW; Su TY; Oketani R; Huang YT; Wu HY; Yonemaru Y; Yamanaka M; Lee H; Zhuo GY; Lee MY; Kawata S; Fujita K
    Phys Rev Lett; 2014 Jan; 112(1):017402. PubMed ID: 24483931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluctuation theorem applied to F1-ATPase.
    Hayashi K; Ueno H; Iino R; Noji H
    Phys Rev Lett; 2010 May; 104(21):218103. PubMed ID: 20867140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using F0F1-ATPase motors as micro-mixers accelerates thrombolysis.
    Tao N; Cheng J; Yue J
    Biochem Biophys Res Commun; 2008 Dec; 377(1):191-4. PubMed ID: 18835248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors.
    Mickolajczyk KJ; Cook ASI; Jevtha JP; Fricks J; Hancock WO
    Biophys J; 2019 Jul; 117(2):331-345. PubMed ID: 31301807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microscopy imaging methods for the detection of silver and titanium nanoparticles within cells.
    Zucker RM; Daniel KM
    Methods Mol Biol; 2012; 906():483-96. PubMed ID: 22791458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy.
    Ortalan V; Zewail AH
    J Am Chem Soc; 2011 Jul; 133(28):10732-5. PubMed ID: 21615171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes.
    York J; Spetzler D; Hornung T; Ishmukhametov R; Martin J; Frasch WD
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):435-9. PubMed ID: 18058004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips.
    Deng Y; Asbury CL
    Methods Mol Biol; 2017; 1486():437-467. PubMed ID: 27844439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel evanescent wave scattering imaging method for single gold particle tracking in solution and on cell membrane.
    He H; Ren J
    Talanta; 2008 Oct; 77(1):166-71. PubMed ID: 18804615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multicolor Tracking of Molecular Motors at Nanometer Resolution.
    Wichner SM; Yildiz A
    Methods Mol Biol; 2018; 1805():139-149. PubMed ID: 29971717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement.
    Noda N; Kamimura S
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023704. PubMed ID: 18315302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.
    Wachulak P; Torrisi A; Nawaz MF; Bartnik A; Adjei D; Vondrová Š; Turňová J; Jančarek A; Limpouch J; Vrbová M; Fiedorowicz H
    Microsc Microanal; 2015 Oct; 21(5):1214-23. PubMed ID: 26373378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient illumination for microsecond tracking microscopy.
    Dulin D; Barland S; Hachair X; Pedaci F
    PLoS One; 2014; 9(9):e107335. PubMed ID: 25251462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy.
    Masia F; Langbein W; Watson P; Borri P
    Opt Lett; 2009 Jun; 34(12):1816-8. PubMed ID: 19529713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding super-resolution nanoscopy and its biological applications in cell imaging.
    Hu D; Zhao B; Xie Y; Orr G; Li AD
    Phys Chem Chem Phys; 2013 Sep; 15(36):14856-61. PubMed ID: 23739871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles.
    Hwu S; Blickenstorfer Y; Tiefenauer RF; Gonnelli C; Schmidheini L; Lüchtefeld I; Hoogenberg BJ; Gisiger AB; Vörös J
    ACS Sens; 2019 Jul; 4(7):1950-1956. PubMed ID: 31310098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.