These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20441766)

  • 41. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy.
    Masia F; Langbein W; Watson P; Borri P
    Opt Lett; 2009 Jun; 34(12):1816-8. PubMed ID: 19529713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles.
    Hwu S; Blickenstorfer Y; Tiefenauer RF; Gonnelli C; Schmidheini L; Lüchtefeld I; Hoogenberg BJ; Gisiger AB; Vörös J
    ACS Sens; 2019 Jul; 4(7):1950-1956. PubMed ID: 31310098
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy.
    Yildiz A; Vale RD
    Cold Spring Harb Protoc; 2015 Sep; 2015(9):pdb.prot086355. PubMed ID: 26330626
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoparticles as Nonfluorescent Analogues of Fluorophores for Optical Nanoscopy.
    Hennig S; Mönkemöller V; Böger C; Müller M; Huser T
    ACS Nano; 2015 Jun; 9(6):6196-205. PubMed ID: 25950994
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics.
    Schneider J; Zahn J; Maglione M; Sigrist SJ; Marquard J; Chojnacki J; Kräusslich HG; Sahl SJ; Engelhardt J; Hell SW
    Nat Methods; 2015 Sep; 12(9):827-30. PubMed ID: 26214129
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Assembly of Rotary and Linear Motor Proteins.
    Jia Y; Li J
    Acc Chem Res; 2019 Jun; 52(6):1623-1631. PubMed ID: 30882207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The aptamer-thrombin-aptamer sandwich complex-bridged gold nanoparticle oligomers for high-precision profiling of thrombin by dark field microscopy.
    Li J; Jiao Y; Liu Q; Chen Z
    Anal Chim Acta; 2018 Oct; 1028():66-76. PubMed ID: 29884355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Depth resolved wide field illumination for biomedical imaging and fabrication.
    So PT; Kim D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3234-5. PubMed ID: 19964287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns.
    Celiksoy S; Ye W; Wandner K; Schlapp F; Kaefer K; Ahijado-Guzmán R; Sönnichsen C
    J Phys Chem Lett; 2020 Jun; 11(12):4554-4558. PubMed ID: 32436712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.
    von Olshausen P; Rohrbach A
    Opt Lett; 2013 Oct; 38(20):4066-9. PubMed ID: 24321924
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers.
    Bao C; Beziere N; del Pino P; Pelaz B; Estrada G; Tian F; Ntziachristos V; de la Fuente JM; Cui D
    Small; 2013 Jan; 9(1):68-74. PubMed ID: 23001862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single molecule energetics of F1-ATPase motor.
    Muneyuki E; Watanabe-Nakayama T; Suzuki T; Yoshida M; Nishizaka T; Noji H
    Biophys J; 2007 Mar; 92(5):1806-12. PubMed ID: 17158579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope.
    Peckys DB; Veith GM; Joy DC; de Jonge N
    PLoS One; 2009 Dec; 4(12):e8214. PubMed ID: 20020038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct modulated pupil function system for real-time imaging of living cells.
    Watanabe TM; Tsukasaki Y; Fujita H; Ichimura T; Saitoh T; Akira S; Yanagida T
    PLoS One; 2012; 7(9):e44028. PubMed ID: 22962597
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Watching single nanoparticles grow in real time through supercontinuum spectroscopy.
    Herrmann LO; Baumberg JJ
    Small; 2013 Nov; 9(22):3743-7. PubMed ID: 23650155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.
    Acuna GP; Bucher M; Stein IH; Steinhauer C; Kuzyk A; Holzmeister P; Schreiber R; Moroz A; Stefani FD; Liedl T; Simmel FC; Tinnefeld P
    ACS Nano; 2012 Apr; 6(4):3189-95. PubMed ID: 22439823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy.
    Ma H; Xu J; Jin J; Huang Y; Liu Y
    Biophys J; 2017 May; 112(10):2196-2208. PubMed ID: 28538156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterodyne holographic microscopy of gold particles.
    Atlan M; Gross M; Desbiolles P; Absil E; Tessier G; Coppey-Moisan M
    Opt Lett; 2008 Mar; 33(5):500-2. PubMed ID: 18311305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modelling the influence of thermal effects induced by radio frequency electric field on the dynamics of the ATPase nano-biomolecular motors.
    Lohrasebi A; Mohamadi S; Fadaie S; Rafii-Tabar H
    Phys Med; 2012 Jul; 28(3):221-9. PubMed ID: 21820928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.