These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20441902)

  • 61. PMMA-grafted nanoclay as novel filler for dental adhesives.
    Atai M; Solhi L; Nodehi A; Mirabedini SM; Kasraei S; Akbari K; Babanzadeh S
    Dent Mater; 2009 Mar; 25(3):339-47. PubMed ID: 18829096
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Conductivity detection on microchips.
    Hergenröder R; Grass B
    Methods Mol Biol; 2006; 339():113-26. PubMed ID: 16790870
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.
    Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K
    Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays.
    Yang D; Liu X; Jin Y; Zhu Y; Zeng D; Jiang X; Ma H
    Biomacromolecules; 2009 Dec; 10(12):3335-40. PubMed ID: 19924999
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fabrication of capillary-like network in a matrix of water-soluble polymer using poly(methyl methacrylate) microfibers.
    Takei T; Kishihara N; Ijima H; Kawakami K
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Feb; 40(1-2):66-9. PubMed ID: 21732729
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate).
    Kong X; Narine SS
    Biomacromolecules; 2008 Aug; 9(8):2221-9. PubMed ID: 18624453
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Channel wall coating on a poly-(methyl methacrylate) CE microchip by thermal immobilization of a cellulose derivative for size-based protein separation.
    Okada H; Kaji N; Tokeshi M; Baba Y
    Electrophoresis; 2007 Dec; 28(24):4582-9. PubMed ID: 18072224
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption.
    Lee DS; Park SH; Yang H; Chung KH; Yoon TH; Kim SJ; Kim K; Kim YT
    Lab Chip; 2004 Aug; 4(4):401-7. PubMed ID: 15269812
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A sheathless poly(methyl methacrylate) chip-CE/MS interface fabricated using a wire-assisted epoxy-fixing method.
    Li FA; Wang CH; Her GR
    Electrophoresis; 2007 Apr; 28(8):1265-73. PubMed ID: 17366484
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Static adsorptive coating of poly(methyl methacrylate) microfluidic chips for extended usage in DNA separations.
    Du XG; Fang ZL
    Electrophoresis; 2005 Dec; 26(24):4625-31. PubMed ID: 16358253
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF; Castaño-Alvarez M; Fernández-la-Villa A; García-Granda M; Fernández-Abedul MT; Costa-García A; Rodríguez-García J
    J Chromatogr A; 2008 Feb; 1180(1-2):193-202. PubMed ID: 18177663
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CE microchips: an opened gate to food analysis.
    Escarpa A; González MC; Crevillén AG; Blasco AJ
    Electrophoresis; 2007 Mar; 28(6):1002-11. PubMed ID: 17370302
    [TBL] [Abstract][Full Text] [Related]  

  • 75. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection.
    Nugen SR; Asiello PJ; Connelly JT; Baeumner AJ
    Biosens Bioelectron; 2009 Apr; 24(8):2428-33. PubMed ID: 19168346
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Integration of a graphite/poly(methyl-methacrylate) composite electrode into a poly(methylmethacrylate) substrate for electrochemical detection in microchips.
    Regel A; Lunte S
    Electrophoresis; 2013 Jul; 34(14):2101-6. PubMed ID: 23670816
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems.
    Nakanishi H; Nishimoto T; Arai A; Abe H; Kanai M; Fujiyama Y; Yoshida T
    Electrophoresis; 2001 Jan; 22(2):230-4. PubMed ID: 11288889
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Strategy for allosteric analysis based on protein-patterned stationary phase in microfluidic chip.
    Bi H; Weng X; Qu H; Kong J; Yang P; Liu B
    J Proteome Res; 2005; 4(6):2154-60. PubMed ID: 16335962
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Pan T; Woolley AT; Lee ML
    Anal Chem; 2004 Dec; 76(23):6948-55. PubMed ID: 15571346
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance.
    Shadpour H; Musyimi H; Chen J; Soper SA
    J Chromatogr A; 2006 Apr; 1111(2):238-51. PubMed ID: 16569584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.