These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 20441902)
81. Microchip electrophoretic protein separation using electroosmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips. Nagata H; Tabuchi M; Hirano K; Baba Y Electrophoresis; 2005 Jun; 26(11):2247-53. PubMed ID: 15861467 [TBL] [Abstract][Full Text] [Related]
82. Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. Wei S; Vaidya B; Patel AB; Soper SA; McCarley RL J Phys Chem B; 2005 Sep; 109(35):16988-96. PubMed ID: 16853163 [TBL] [Abstract][Full Text] [Related]
83. A simplified poly(dimethylsiloxane) capillary electrophoresis microchip integrated with a low-noise contactless conductivity detector. Liu B; Zhang Y; Mayer D; Krause HJ; Jin Q; Zhao J; Offenhäusser A Electrophoresis; 2011 Mar; 32(6-7):699-704. PubMed ID: 21341289 [TBL] [Abstract][Full Text] [Related]
84. [Viability of murine 3T3 fibroblasts on the poly(methyl methacrylate) surface modified by constant UV irradiation]. Chaberska H; Kaczmarek H; Bazylak G Polim Med; 2007; 37(3):13-9. PubMed ID: 18251201 [TBL] [Abstract][Full Text] [Related]
85. Well-defined PMMA brush on silica particles fabricated by surface-initiated photopolymerization (SIPP). Chen F; Jiang X; Liu R; Yin J ACS Appl Mater Interfaces; 2010 Apr; 2(4):1031-7. PubMed ID: 20423123 [TBL] [Abstract][Full Text] [Related]
86. Electrochemical detector based on sol-gel-derived carbon composite material for capillary electrophoresis microchips. Sun X; Yan J; Yang X; Wang E Electrophoresis; 2004 Oct; 25(20):3455-60. PubMed ID: 15490438 [TBL] [Abstract][Full Text] [Related]
87. Fabrication of DNA microarrays onto polymer substrates using UV modification protocols with integration into microfluidic platforms for the sensing of low-abundant DNA point mutations. Soper SA; Hashimoto M; Situma C; Murphy MC; McCarley RL; Cheng YW; Barany F Methods; 2005 Sep; 37(1):103-13. PubMed ID: 16199178 [TBL] [Abstract][Full Text] [Related]
88. Carbon nanotube reinforced porous gels of poly(methyl methacrylate) with nonsolvents as porogens. Vaysse M; Khan MK; Sundararajan P Langmuir; 2009 Jun; 25(12):7042-9. PubMed ID: 19438176 [TBL] [Abstract][Full Text] [Related]
89. Poly(methyl methacrylate) microchip affinity capillary gel electrophoresis of aptamer-protein complexes for the analysis of thrombin in plasma. Obubuafo A; Balamurugan S; Shadpour H; Spivak D; McCarley RL; Soper SA Electrophoresis; 2008 Aug; 29(16):3436-45. PubMed ID: 18702051 [TBL] [Abstract][Full Text] [Related]
90. Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Wang J; Pumera M; Chatrathi MP; Escarpa A; Konrad R; Griebel A; Dörner W; Löwe H Electrophoresis; 2002 Feb; 23(4):596-601. PubMed ID: 11870771 [TBL] [Abstract][Full Text] [Related]
91. A rejuvenation method for poly(N,N-dimethylacrylamide)-coated glass microfluidic chips. Ma R; Crabtree HJ; Backhouse CJ Electrophoresis; 2005 Jul; 26(14):2692-700. PubMed ID: 15981296 [TBL] [Abstract][Full Text] [Related]
92. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers. Meriç G; Ruyter IE Dent Mater; 2007 Sep; 23(9):1157-63. PubMed ID: 17118440 [TBL] [Abstract][Full Text] [Related]
93. A simple method using two-step hot embossing technique with shrinking for fabrication of cross microchannels on PMMA substrate and its application to electrophoretic separation of amino acids in functional drinks. Wiriyakun N; Nacapricha D; Chantiwas R Talanta; 2016 Dec; 161():574-582. PubMed ID: 27769450 [TBL] [Abstract][Full Text] [Related]
94. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips. Fu LM; Lee CY; Liao MH; Lin CH Biomed Microdevices; 2008 Feb; 10(1):73-80. PubMed ID: 17680365 [TBL] [Abstract][Full Text] [Related]
95. Performance of SU-8 microchips as separation devices and comparison with glass microchips. Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877 [TBL] [Abstract][Full Text] [Related]
96. Rapid bonding of Pyrex glass microchips. Akiyama Y; Morishima K; Kogi A; Kikutani Y; Tokeshi M; Kitamori T Electrophoresis; 2007 Mar; 28(6):994-1001. PubMed ID: 17370301 [TBL] [Abstract][Full Text] [Related]
97. Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. Li Y; Shimizu H ACS Appl Mater Interfaces; 2009 Aug; 1(8):1650-5. PubMed ID: 20355779 [TBL] [Abstract][Full Text] [Related]
98. Preparation of submicron polypyrrole/poly(methyl methacrylate) coaxial fibers and conversion to polypyrrole tubes and carbon tubes. Dong H; Jones WE Langmuir; 2006 Dec; 22(26):11384-7. PubMed ID: 17154629 [TBL] [Abstract][Full Text] [Related]
99. Surface segregation of poly(2-methoxyethyl acrylate) in a mixture with poly(methyl methacrylate). Hirata T; Matsuno H; Tanaka M; Tanaka K Phys Chem Chem Phys; 2011 Mar; 13(11):4928-34. PubMed ID: 21243167 [TBL] [Abstract][Full Text] [Related]
100. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master. Lobo-Júnior EO; Gabriel EF; Dos Santos RA; de Souza FR; Lopes WD; Lima RS; Gobbi AL; Coltro WK Electrophoresis; 2017 Jan; 38(2):250-257. PubMed ID: 27377397 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]