These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20441956)

  • 1. A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV-vis spectrum.
    Chen KJ; Lu CJ
    Talanta; 2010 Jun; 81(4-5):1670-5. PubMed ID: 20441956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM; Xia S; Zou H
    Nanotechnology; 2009 Jun; 20(25):255702. PubMed ID: 19491460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.
    Prabhakar A; Mukherji S
    Lab Chip; 2010 Dec; 10(24):3422-5. PubMed ID: 20944850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous synthesis and assembly of gold nanoparticles in cuttlebone-derived organic matrix: a "green" pathway for gold nanocomposite.
    Jia X; Qian W
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4370-6. PubMed ID: 19049027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles.
    Ju S; Nguyen VL; Watekar PR; Kim BH; Jeong C; Boo S; Kim CJ; Han WT
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3555-8. PubMed ID: 17252810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles.
    Wu C; Xiong C; Wang L; Lan C; Ling L
    Analyst; 2010 Oct; 135(10):2682-7. PubMed ID: 20820488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemistry on a localized surface plasmon resonance sensor.
    Sannomiya T; Dermutz H; Hafner C; Vörös J; Dahlin AB
    Langmuir; 2010 May; 26(10):7619-26. PubMed ID: 20020724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates.
    Lin HY; Chen CT; Chen YC
    Anal Chem; 2006 Oct; 78(19):6873-8. PubMed ID: 17007509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance in superperiodic metal nanoslits.
    Leong H; Guo J
    Opt Lett; 2011 Dec; 36(24):4764-6. PubMed ID: 22179876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing.
    Beeram SR; Zamborini FP
    ACS Nano; 2010 Jul; 4(7):3633-46. PubMed ID: 20575510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors.
    Beliatis MJ; Henley SJ; Silva SR
    Opt Lett; 2011 Apr; 36(8):1362-4. PubMed ID: 21499357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome p450.
    Zhao J; Das A; Zhang X; Schatz GC; Sligar SG; Van Duyne RP
    J Am Chem Soc; 2006 Aug; 128(34):11004-5. PubMed ID: 16925400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer.
    Yonzon CR; Jeoung E; Zou S; Schatz GC; Mrksich M; Van Duyne RP
    J Am Chem Soc; 2004 Oct; 126(39):12669-76. PubMed ID: 15453801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles.
    Smitha SL; Nissamudeen KM; Philip D; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):186-90. PubMed ID: 18222106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.