These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 20442032)
1. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. Jiang H; Ji H; Qiu J; Chen Y IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1200-10. PubMed ID: 20442032 [TBL] [Abstract][Full Text] [Related]
2. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Gu GY; Yang MJ; Zhu LM Rev Sci Instrum; 2012 Jun; 83(6):065106. PubMed ID: 22755661 [TBL] [Abstract][Full Text] [Related]
3. A Digitized Representation of the Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Piezoelectric Actuator Hysteresis. Zhou C; Feng C; Aye YN; Ang WT Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442563 [TBL] [Abstract][Full Text] [Related]
4. Research on Asymmetric Hysteresis Modeling and Compensation of Piezoelectric Actuators with PMPI Model. Wang W; Wang J; Chen Z; Wang R; Lu K; Sang Z; Ju B Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235522 [TBL] [Abstract][Full Text] [Related]
5. A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators. Gan J; Zhang X; Wu H Rev Sci Instrum; 2016 Mar; 87(3):035002. PubMed ID: 27036808 [TBL] [Abstract][Full Text] [Related]
6. Modeling and Compensation for Asymmetrical and Dynamic Hysteresis of Piezoelectric Actuators Using a Dynamic Delay Prandtl-Ishlinskii Model. Wang W; Han F; Chen Z; Wang R; Wang C; Lu K; Wang J; Ju B Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467202 [TBL] [Abstract][Full Text] [Related]
7. Modeling and Compensation of Dynamic Hysteresis with Force-Voltage Coupling for Piezoelectric Actuators. Wang W; Wang J; Wang R; Chen Z; Han F; Lu K; Wang C; Xu Z; Ju B Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832778 [TBL] [Abstract][Full Text] [Related]
8. A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators. Badel A; Qiu J; Nakano T IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1086-94. PubMed ID: 18519217 [TBL] [Abstract][Full Text] [Related]
9. Hysteresis compensation of piezoelectric actuators: the modified Rayleigh model. Park J; Moon W Ultrasonics; 2010 Mar; 50(3):335-9. PubMed ID: 19939427 [TBL] [Abstract][Full Text] [Related]
10. Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map. Long Z; Wang R; Fang J; Dai X; Li Z Rev Sci Instrum; 2017 Jul; 88(7):075003. PubMed ID: 28764489 [TBL] [Abstract][Full Text] [Related]
11. Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. Ivan IA; Rakotondrabe M; Lutz P; Chaillet N Rev Sci Instrum; 2009 Dec; 80(12):126103. PubMed ID: 20059177 [TBL] [Abstract][Full Text] [Related]
12. Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl-Ishlinskii model. Zang X; Liu Y; Heng S; Lin Z; Zhao J Biomed Mater Eng; 2017; 28(2):131-140. PubMed ID: 28372266 [TBL] [Abstract][Full Text] [Related]
13. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model. An D; Li H; Xu Y; Zhang L Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393320 [TBL] [Abstract][Full Text] [Related]
14. Modeling and compensation of hysteresis in piezoelectric actuators. Yu Z; Wu Y; Fang Z; Sun H Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984 [TBL] [Abstract][Full Text] [Related]
15. A Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Asymmetric Hysteresis of Piezo-Actuated Flexure-Based Systems. Zhou C; Yuan M; Feng C; Ang WT Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433360 [TBL] [Abstract][Full Text] [Related]
16. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model. Gu G; Zhu L Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625 [TBL] [Abstract][Full Text] [Related]
17. Modeling and Inverse Compensation of Cross-Coupling Hysteresis in Piezoceramics under Multi-Input. Zhou X; Zhang L; Yang Z; Sun L Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467768 [TBL] [Abstract][Full Text] [Related]
18. Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation. Ko YR; Hwang Y; Chae M; Kim TH ISA Trans; 2017 Sep; 70():209-218. PubMed ID: 28716400 [TBL] [Abstract][Full Text] [Related]
19. A new open-loop driving method of piezoelectric actuator for periodic reference inputs. Ru C; Sun L Ultrasonics; 2006 Dec; 44 Suppl 1():e633-7. PubMed ID: 16806369 [TBL] [Abstract][Full Text] [Related]
20. Grasping force hysteresis compensation of a piezoelectric-actuated wire clamp with a modified inverse Prandtl-Ishlinskii model. Liang C; Wang F; Tian Y; Zhao X; Zhang D Rev Sci Instrum; 2017 Nov; 88(11):115101. PubMed ID: 29195342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]