BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20442413)

  • 1. Studies on the catalytic mechanism of a glutamic peptidase.
    Kondo MY; Okamoto DN; Santos JA; Juliano MA; Oda K; Pillai B; James MN; Juliano L; Gouvea IE
    J Biol Chem; 2010 Jul; 285(28):21437-45. PubMed ID: 20442413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic residues and substrate specificity of scytalidoglutamic peptidase, the first member of the eqolisin in family (G1) of peptidases.
    Kataoka Y; Takada K; Oyama H; Tsunemi M; James MN; Oda K
    FEBS Lett; 2005 Jun; 579(14):2991-4. PubMed ID: 15907842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of scytalidoglutamic peptidase with its first potent inhibitor provides insights into substrate specificity and catalysis.
    Pillai B; Cherney MM; Hiraga K; Takada K; Oda K; James MN
    J Mol Biol; 2007 Jan; 365(2):343-61. PubMed ID: 17069854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the substrate specificity of mouse cathepsin P.
    Puzer L; Barros NM; Oliveira V; Juliano MA; Lu G; Hassanein M; Juliano L; Mason RW; Carmona AK
    Arch Biochem Biophys; 2005 Mar; 435(1):190-6. PubMed ID: 15680921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the amino acid residues essential for proteolytic activity in an archaeal signal peptide peptidase.
    Matsumi R; Atomi H; Imanaka T
    J Biol Chem; 2006 Apr; 281(15):10533-9. PubMed ID: 16484219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding.
    Machado MF; Rioli V; Dalio FM; Castro LM; Juliano MA; Tersariol IL; Ferro ES; Juliano L; Oliveira V
    Biochem J; 2007 Jun; 404(2):279-88. PubMed ID: 17313369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of kininogenase activity of an acidic proteinase isolated from human kidney.
    Gomes RA; Juliano L; Chagas JR; Hial V
    Can J Physiol Pharmacol; 1997 Jun; 75(6):757-61. PubMed ID: 9276160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The peptidases from fungi and viruses.
    James MN
    Biol Chem; 2006 Aug; 387(8):1023-9. PubMed ID: 16895471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsite specificity of memapsin 2 (beta-secretase): implications for inhibitor design.
    Turner RT; Koelsch G; Hong L; Castanheira P; Ermolieff J; Ghosh AK; Tang J
    Biochemistry; 2001 Aug; 40(34):10001-6. PubMed ID: 11513577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium(II) complex as a sequence-specific peptidase: hydrolytic cleavage under mild conditions of X-Pro peptide bonds in X-Pro-Met and X-Pro-His segments.
    Milović NM; Kostić NM
    J Am Chem Soc; 2003 Jan; 125(3):781-8. PubMed ID: 12526679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis.
    Tjalsma H; Stover AG; Driks A; Venema G; Bron S; van Dijl JM
    J Biol Chem; 2000 Aug; 275(33):25102-8. PubMed ID: 10827084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of recombinant human renal renin: effect of histidine in the P2 subsite on pH dependence.
    Green DW; Aykent S; Gierse JK; Zupec ME
    Biochemistry; 1990 Mar; 29(12):3126-33. PubMed ID: 2186807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The primary structure of iron-superoxide dismutase from Photobacterium leiognathi.
    Barra D; Schininà ME; Bannister WH; Bannister JV; Bossa F
    J Biol Chem; 1987 Jan; 262(3):1001-9. PubMed ID: 3542995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and hydrolysis by cysteine and serine proteases of short internally quenched fluorogenic peptides.
    Melo RL; Alves LC; Del Nery E; Juliano L; Juliano MA
    Anal Biochem; 2001 Jun; 293(1):71-7. PubMed ID: 11373081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein.
    Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ
    Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Mimics of Aspartate-Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp-X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach.
    Ly HGT; Mihaylov TT; Proost P; Pierloot K; Harvey JN; Parac-Vogt TN
    Chemistry; 2019 Nov; 25(63):14370-14381. PubMed ID: 31469197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primary structure of human liver manganese superoxide dismutase.
    Barra D; Schinina ME; Simmaco M; Bannister JV; Bannister WH; Rotilio G; Bossa F
    J Biol Chem; 1984 Oct; 259(20):12595-601. PubMed ID: 6386798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a bacterial glutamic peptidase.
    Jensen K; Østergaard PR; Wilting R; Lassen SF
    BMC Biochem; 2010 Dec; 11():47. PubMed ID: 21122090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.