These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20442460)

  • 1. Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning.
    Ruan D; Keall P
    Phys Med Biol; 2010 Jun; 55(11):3011-25. PubMed ID: 20442460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach.
    Liu W; Sawant A; Ruan D
    Phys Med Biol; 2016 Jul; 61(13):4989-99. PubMed ID: 27299958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network.
    Bukhari W; Hong SM
    Phys Med Biol; 2016 Mar; 61(5):1947-67. PubMed ID: 26878653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comparative performance of four respiratory motion predictors for real-time tumour tracking.
    Krauss A; Nill S; Oelfke U
    Phys Med Biol; 2011 Aug; 56(16):5303-17. PubMed ID: 21799237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kernel density estimation-based real-time prediction for respiratory motion.
    Ruan D
    Phys Med Biol; 2010 Mar; 55(5):1311-26. PubMed ID: 20134084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of image guided motion management methods in lung cancer radiotherapy.
    Zhuang L; Yan D; Liang J; Ionascu D; Mangona V; Yang K; Zhou J
    Med Phys; 2014 Mar; 41(3):031911. PubMed ID: 24593729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using an external surrogate for predictor model training in real-time motion management of lung tumors.
    Rottmann J; Berbeco R
    Med Phys; 2014 Dec; 41(12):121706. PubMed ID: 25471953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy.
    Mukumoto N; Nakamura M; Akimoto M; Miyabe Y; Yokota K; Matsuo Y; Mizowaki T; Hiraoka M
    Med Phys; 2017 Aug; 44(8):3899-3908. PubMed ID: 28513922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the outcome of respiratory motion prediction.
    Ernst F; Schlaefer A; Schweikard A
    Med Phys; 2011 Oct; 38(10):5569-81. PubMed ID: 21992375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smoothing of respiratory motion traces for motion-compensated radiotherapy.
    Ernst F; Schlaefer A; Schweikard A
    Med Phys; 2010 Jan; 37(1):282-94. PubMed ID: 20175491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of respiratory tumour motion for real-time image-guided radiotherapy.
    Sharp GC; Jiang SB; Shimizu S; Shirato H
    Phys Med Biol; 2004 Feb; 49(3):425-40. PubMed ID: 15012011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for volumetric imaging in radiotherapy using single x-ray projection.
    Xu Y; Yan H; Ouyang L; Wang J; Zhou L; Cervino L; Jiang SB; Jia X
    Med Phys; 2015 May; 42(5):2498-509. PubMed ID: 25979043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.
    Wilms M; Werner R; Blendowski M; Ortmüller J; Handels H
    Methods Inf Med; 2014; 53(4):257-63. PubMed ID: 24993030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.
    Yubo Wang ; Tatinati S; Liyu Huang ; Kim Jeong Hong ; Shafiq G; Veluvolu KC; Khong AWH
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2859-2862. PubMed ID: 29060494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression.
    Bukhari W; Hong SM
    Phys Med Biol; 2015 Jan; 60(1):233-52. PubMed ID: 25489980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory correlated cone beam CT.
    Sonke JJ; Zijp L; Remeijer P; van Herk M
    Med Phys; 2005 Apr; 32(4):1176-86. PubMed ID: 15895601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking.
    Keall PJ; Joshi S; Vedam SS; Siebers JV; Kini VR; Mohan R
    Med Phys; 2005 Apr; 32(4):942-51. PubMed ID: 15895577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the motion of chest internal points using a recurrent neural network trained with real-time recurrent learning for latency compensation in lung cancer radiotherapy.
    Pohl M; Uesaka M; Demachi K; Bhusal Chhatkuli R
    Comput Med Imaging Graph; 2021 Jul; 91():101941. PubMed ID: 34265553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential improvements of lung and prostate MLC tracking investigated by treatment simulations.
    Toftegaard J; Keall PJ; O'Brien R; Ruan D; Ernst F; Homma N; Ichiji K; Poulsen PR
    Med Phys; 2018 May; 45(5):2218-2229. PubMed ID: 29574859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time tumor motion estimation using respiratory surrogate via memory-based learning.
    Li R; Lewis JH; Berbeco RI; Xing L
    Phys Med Biol; 2012 Aug; 57(15):4771-86. PubMed ID: 22772042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.