These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20442463)

  • 1. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields.
    Shaw A; Nunn J
    Phys Med Biol; 2010 Jun; 55(11):N321-7. PubMed ID: 20442463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative estimation of ultrasound beam intensities using infrared thermography-Experimental validation.
    Giridhar D; Robinson RA; Liu Y; Sliwa J; Zderic V; Myers MR
    J Acoust Soc Am; 2012 Jun; 131(6):4283-91. PubMed ID: 22712903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of quantitative Schlieren assessment of physiotherapy ultrasound fields in describing variations between tissue heating rates of different transducers.
    Johns LD; Demchak TJ; Straub SJ; Howard SM
    Ultrasound Med Biol; 2007 Dec; 33(12):1911-7. PubMed ID: 17698281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and development of a prototype endocavitary probe for high-intensity focused ultrasound delivery with integrated magnetic resonance imaging.
    Wharton IP; Rivens IH; Ter Haar GR; Gilderdale DJ; Collins DJ; Hand JW; Abel PD; deSouza NM
    J Magn Reson Imaging; 2007 Mar; 25(3):548-56. PubMed ID: 17279503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-mode real-time tomographic reflection for a matrix array ultrasound sonic flashlight.
    Stetten G; Cois A; Chang W; Shelton D; Tamburo R; Castellucci J; von Ramm O
    Acad Radiol; 2005 May; 12(5):535-43. PubMed ID: 15866125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential ultrasonic imaging for the characterization of lesions induced by high intensity focused ultrasound.
    Zhong H; Wan M; Jiang Y; Wang S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e285-8. PubMed ID: 16844167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography.
    Myers MR; Giridhar D
    J Acoust Soc Am; 2011 Jun; 129(6):4073-83. PubMed ID: 21682428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of a segmented transducer for rib sparing in HIFU treatments.
    Civale J; Clarke R; Rivens I; ter Haar G
    Ultrasound Med Biol; 2006 Nov; 32(11):1753-61. PubMed ID: 17112961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic temperature imaging for guiding focused ultrasound surgery: effect of angle between imaging beam and therapy beam.
    Miller NR; Bograchev KM; Bamber JC
    Ultrasound Med Biol; 2005 Mar; 31(3):401-13. PubMed ID: 15749564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.
    Maleke C; Konofagou EE
    Phys Med Biol; 2008 Mar; 53(6):1773-93. PubMed ID: 18367802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging-guided focused ultrasound for thermal ablation in the brain: a feasibility study in a swine model.
    Cohen ZR; Zaubermann J; Harnof S; Mardor Y; Nass D; Zadicario E; Hananel A; Castel D; Faibel M; Ram Z
    Neurosurgery; 2007 Apr; 60(4):593-600; discussion 600. PubMed ID: 17415195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ultrasound brain helmet: feasibility study of multiple simultaneous 3D scans of cerebral vasculature.
    Smith SW; Ivancevich NM; Lindsey BD; Whitman J; Light E; Fronheiser M; Nicoletto HA; Laskowitz DT
    Ultrasound Med Biol; 2009 Feb; 35(2):329-38. PubMed ID: 18947918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time freehand 3D ultrasound calibration.
    Hsu PW; Prager RW; Gee AH; Treece GM
    Ultrasound Med Biol; 2008 Feb; 34(2):239-51. PubMed ID: 17935870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.
    Tang K; Choy V; Chopra R; Bronskill MJ
    Phys Med Biol; 2007 May; 52(10):2905-19. PubMed ID: 17473359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of respiratory motion and deformation of the liver using laparoscopic freehand 3D ultrasound system.
    Nakamoto M; Hirayama H; Sato Y; Konishi K; Kakeji Y; Hashizume M; Tamura S
    Med Image Anal; 2007 Oct; 11(5):429-42. PubMed ID: 17822946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time three-dimensional ultrasound methods for shape analysis and visualization.
    Stetten G; Tamburo R
    Methods; 2001 Oct; 25(2):221-30. PubMed ID: 11812207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback.
    Chopra R; Wachsmuth J; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2006 Feb; 51(4):827-44. PubMed ID: 16467581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications.
    Cheng VS; Bai J; Chen Y
    Med Eng Phys; 2009 Nov; 31(9):1173-81. PubMed ID: 19782632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.