These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20442476)
1. Iron assisted growth of copper-tipped multi-walled carbon nanotubes. Abrams ZR; Szwarcman D; Lereah Y; Markovich G; Hanein Y Nanotechnology; 2007 Dec; 18(49):495602. PubMed ID: 20442476 [TBL] [Abstract][Full Text] [Related]
2. Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers. Simmons JM; Nichols BM; Marcus MS; Castellini OM; Hamers RJ; Eriksson MA Small; 2006 Jul; 2(7):902-9. PubMed ID: 17193143 [TBL] [Abstract][Full Text] [Related]
3. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. Min YS; Bae EJ; Oh BS; Kang D; Park W J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391 [TBL] [Abstract][Full Text] [Related]
4. Site-selective synthesis of in situ Ni-filled multi-walled carbon nanotubes using Ni(salen) as a catalyst source. Sengupta J; Jana A; Singh ND; Mitra C; Jacob C Nanotechnology; 2010 Oct; 21(41):415605. PubMed ID: 20852357 [TBL] [Abstract][Full Text] [Related]
5. Iron silicide root formation in carbon nanotubes grown by microwave PECVD. AuBuchon JF; Daraio C; Chen LH; Gapin AI; Jin S J Phys Chem B; 2005 Dec; 109(51):24215-9. PubMed ID: 16375415 [TBL] [Abstract][Full Text] [Related]
6. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Pumera M Langmuir; 2007 May; 23(11):6453-8. PubMed ID: 17455966 [TBL] [Abstract][Full Text] [Related]
7. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Chen X; Wang R; Xu J; Yu D Micron; 2004; 35(6):455-60. PubMed ID: 15120130 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
9. Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene. Lara-Romero J; Alonso-Núñez G; Jiménez-Sandoval S; Avalos-Borja M J Nanosci Nanotechnol; 2008 Dec; 8(12):6509-12. PubMed ID: 19205231 [TBL] [Abstract][Full Text] [Related]
10. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]
11. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122 [TBL] [Abstract][Full Text] [Related]
12. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system. Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284 [TBL] [Abstract][Full Text] [Related]
13. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy. Huang S; Qian Y; Chen J; Cai Q; Wan L; Wang S; Hu W J Am Chem Soc; 2008 Sep; 130(36):11860-1. PubMed ID: 18702491 [TBL] [Abstract][Full Text] [Related]
14. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. Lu C; Liu J J Phys Chem B; 2006 Oct; 110(41):20254-7. PubMed ID: 17034203 [TBL] [Abstract][Full Text] [Related]
15. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. He M; Chernov AI; Fedotov PV; Obraztsova ED; Sainio J; Rikkinen E; Jiang H; Zhu Z; Tian Y; Kauppinen EI; Niemelä M; Krause AO J Am Chem Soc; 2010 Oct; 132(40):13994-6. PubMed ID: 20857973 [TBL] [Abstract][Full Text] [Related]
16. Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process. Liu B; Ren W; Liu C; Sun CH; Gao L; Li S; Jiang C; Cheng HM ACS Nano; 2009 Nov; 3(11):3421-30. PubMed ID: 19856907 [TBL] [Abstract][Full Text] [Related]
17. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Monteiro-Riviere NA; Nemanich RJ; Inman AO; Wang YY; Riviere JE Toxicol Lett; 2005 Mar; 155(3):377-84. PubMed ID: 15649621 [TBL] [Abstract][Full Text] [Related]
18. Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. Rümmeli MH; Schäffel F; Bachmatiuk A; Adebimpe D; Trotter G; Börrnert F; Scott A; Coric E; Sparing M; Rellinghaus B; McCormick PG; Cuniberti G; Knupfer M; Schultz L; Büchner B ACS Nano; 2010 Feb; 4(2):1146-52. PubMed ID: 20088596 [TBL] [Abstract][Full Text] [Related]
20. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. Ouyang Y; Chen L; Liu QX; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]