These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20442867)

  • 1. Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model.
    Ting D; Wang G; Shapovalov M; Mitra R; Jordan MI; Dunbrack RL
    PLoS Comput Biol; 2010 Apr; 6(4):e1000763. PubMed ID: 20442867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new clustering and nomenclature for beta turns derived from high-resolution protein structures.
    Shapovalov M; Vucetic S; Dunbrack RL
    PLoS Comput Biol; 2019 Mar; 15(3):e1006844. PubMed ID: 30845191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Dirichlet mixture priors to derive hidden Markov models for protein families.
    Brown M; Hughey R; Krogh A; Mian IS; Sjölander K; Haussler D
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():47-55. PubMed ID: 7584370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences.
    Wang J; Liu H
    J Biomol NMR; 2007 Jan; 37(1):31-41. PubMed ID: 17151953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks.
    Helles G; Fonseca R
    BMC Bioinformatics; 2009 Oct; 10():338. PubMed ID: 19835576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On residues in the disallowed region of the Ramachandran map.
    Pal D; Chakrabarti P
    Biopolymers; 2002 Mar; 63(3):195-206. PubMed ID: 11787007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing side-chain perturbations of the protein backbone: a knowledge-based classification of residue Ramachandran space.
    Dahl DB; Bohannan Z; Mo Q; Vannucci M; Tsai J
    J Mol Biol; 2008 May; 378(3):749-58. PubMed ID: 18377931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides.
    Schweitzer-Stenner R; Toal SE
    Mol Biosyst; 2016 Oct; 12(11):3294-3306. PubMed ID: 27545097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dirichlet mixtures, the Dirichlet process, and the structure of protein space.
    Nguyen VA; Boyd-Graber J; Altschul SF
    J Comput Biol; 2013 Jan; 20(1):1-18. PubMed ID: 23294268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Randomizing of Oligopeptide Conformations by Nearest Neighbor Interactions between Amino Acid Residues.
    Schweitzer-Stenner R; Milorey B; Schwalbe H
    Biomolecules; 2022 May; 12(5):. PubMed ID: 35625612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparsely populated residue conformations in protein structures: revisiting "experimental" Ramachandran maps.
    Kalmankar NV; Ramakrishnan C; Balaram P
    Proteins; 2014 Jul; 82(7):1101-12. PubMed ID: 23934782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification.
    Wojcik J; Mornon JP; Chomilier J
    J Mol Biol; 1999 Jun; 289(5):1469-90. PubMed ID: 10373380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Ramachandran Maps to Tertiary Structures of Proteins.
    DasGupta D; Kaushik R; Jayaram B
    J Phys Chem B; 2015 Aug; 119(34):11136-45. PubMed ID: 26098815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions.
    Shapovalov MV; Dunbrack RL
    Structure; 2011 Jun; 19(6):844-58. PubMed ID: 21645855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformations of amino acids in proteins.
    Hovmöller S; Zhou T; Ohlson T
    Acta Crystallogr D Biol Crystallogr; 2002 May; 58(Pt 5):768-76. PubMed ID: 11976487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure.
    Cheung MS; Maguire ML; Stevens TJ; Broadhurst RW
    J Magn Reson; 2010 Feb; 202(2):223-33. PubMed ID: 20015671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disallowed Ramachandran conformations of amino acid residues in protein structures.
    Gunasekaran K; Ramakrishnan C; Balaram P
    J Mol Biol; 1996 Nov; 264(1):191-8. PubMed ID: 8950277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical measures on residue-level protein structural properties.
    Huang Y; Bonett S; Kloczkowski A; Jernigan R; Wu Z
    J Struct Funct Genomics; 2011 Jul; 12(2):119-36. PubMed ID: 21452025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.