These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20442967)

  • 1. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions.
    Bauer WA; Fischlechner M; Abell C; Huck WT
    Lab Chip; 2010 Jul; 10(14):1814-9. PubMed ID: 20442967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems.
    Barbier V; Tatoulian M; Li H; Arefi-Khonsari F; Ajdari A; Tabeling P
    Langmuir; 2006 Jun; 22(12):5230-2. PubMed ID: 16732644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic polycarbonate for generation of oil in water emulsions in microfluidic devices.
    Derzsi L; Jankowski P; Lisowski W; Garstecki P
    Lab Chip; 2011 Mar; 11(6):1151-6. PubMed ID: 21267479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA; Caulum MM; Henry CS
    Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of the effect of surface energy of microchannels on microfluidic emulsification.
    Li W; Nie Z; Zhang H; Paquet C; Seo M; Garstecki P; Kumacheva E
    Langmuir; 2007 Jul; 23(15):8010-4. PubMed ID: 17583921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of biodegradable microcapsules utilizing 3D, selectively surface-modified PDMS microfluidic devices.
    Liao CY; Su YC
    Biomed Microdevices; 2010 Feb; 12(1):125-33. PubMed ID: 19851872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays.
    Sung WC; Chen HH; Makamba H; Chen SH
    Anal Chem; 2009 Oct; 81(19):7967-73. PubMed ID: 19722534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic-based method for the transfer of biopolymer particles from an oil phase to an aqueous phase.
    Wong EH; Rondeau E; Schuetz P; Cooper-White J
    Lab Chip; 2009 Sep; 9(17):2582-90. PubMed ID: 19680582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic-hydrophobic surface.
    Kamnerdsook A; Juntasaro E; Khemthongcharoen N; Chanasakulniyom M; Sripumkhai W; Pattamang P; Promptmas C; Atthi N; Jeamsaksiri W
    RSC Adv; 2021 Oct; 11(56):35653-35662. PubMed ID: 35493190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible surfactants for water-in-fluorocarbon emulsions.
    Holtze C; Rowat AC; Agresti JJ; Hutchison JB; Angilè FE; Schmitz CH; Köster S; Duan H; Humphry KJ; Scanga RA; Johnson JS; Pisignano D; Weitz DA
    Lab Chip; 2008 Oct; 8(10):1632-9. PubMed ID: 18813384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules.
    Kantak C; Beyer S; Yobas L; Bansal T; Trau D
    Lab Chip; 2011 Mar; 11(6):1030-5. PubMed ID: 21218225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the surface modification of microchannels for microcapillary electrophoresis chips.
    Lee GB; Lin CH; Lee KH; Lin YF
    Electrophoresis; 2005 Dec; 26(24):4616-24. PubMed ID: 16358252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.