These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 20443037)
1. Virtual screening of specific chemical compounds by exploring E.coli NAD+-dependent DNA ligase as a target for antibacterial drug discovery. Akhoon BA; Gupta SK; Dhaliwal G; Srivastava M; Gupta SK J Mol Model; 2011 Feb; 17(2):265-73. PubMed ID: 20443037 [TBL] [Abstract][Full Text] [Related]
2. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+. Sriskanda V; Shuman S J Biol Chem; 2002 Mar; 277(12):9695-700. PubMed ID: 11781321 [TBL] [Abstract][Full Text] [Related]
3. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis. Singh V; Somvanshi P Protein Pept Lett; 2010 Feb; 17(2):269-76. PubMed ID: 20214650 [TBL] [Abstract][Full Text] [Related]
4. Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones. Brötz-Oesterhelt H; Knezevic I; Bartel S; Lampe T; Warnecke-Eberz U; Ziegelbauer K; Häbich D; Labischinski H J Biol Chem; 2003 Oct; 278(41):39435-42. PubMed ID: 12867414 [TBL] [Abstract][Full Text] [Related]
5. Discovery and Optimization of NAD+-Dependent DNA Ligase Inhibitors as Novel Antibacterial Compounds. Bi F; Ma R; Ma S Curr Pharm Des; 2017; 23(14):2117-2130. PubMed ID: 27784238 [TBL] [Abstract][Full Text] [Related]
6. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I. Srivastava SK; Dube D; Tewari N; Dwivedi N; Tripathi RP; Ramachandran R Nucleic Acids Res; 2005; 33(22):7090-101. PubMed ID: 16361267 [TBL] [Abstract][Full Text] [Related]
7. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. Srivastava SK; Tripathi RP; Ramachandran R J Biol Chem; 2005 Aug; 280(34):30273-81. PubMed ID: 15901723 [TBL] [Abstract][Full Text] [Related]
8. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I. Yadav N; Khanam T; Shukla A; Rai N; Hajela K; Ramachandran R Org Biomol Chem; 2015 May; 13(19):5475-87. PubMed ID: 25875403 [TBL] [Abstract][Full Text] [Related]
9. Cloning and functional characterization of an NAD(+)-dependent DNA ligase from Staphylococcus aureus. Kaczmarek FS; Zaniewski RP; Gootz TD; Danley DE; Mansour MN; Griffor M; Kamath AV; Cronan M; Mueller J; Sun D; Martin PK; Benton B; McDowell L; Biek D; Schmid MB J Bacteriol; 2001 May; 183(10):3016-24. PubMed ID: 11325928 [TBL] [Abstract][Full Text] [Related]
10. Identification of Novel Inhibitors of Alomari A; Gowland R; Southwood C; Barrow J; Bentley Z; Calvin-Nelson J; Kaminski A; LeFevre M; Callaghan AJ; Vincent HA; Gowers DM Molecules; 2021 Apr; 26(9):. PubMed ID: 33923034 [TBL] [Abstract][Full Text] [Related]
11. Base-modified NAD and AMP derivatives and their activity against bacterial DNA ligases. Pergolizzi G; Cominetti MM; Butt JN; Field RA; Bowater RP; Wagner GK Org Biomol Chem; 2015 Jun; 13(22):6380-98. PubMed ID: 25974621 [TBL] [Abstract][Full Text] [Related]
12. NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: novel structure-function relationship and identification of a specific inhibitor. Srivastava SK; Dube D; Kukshal V; Jha AK; Hajela K; Ramachandran R Proteins; 2007 Oct; 69(1):97-111. PubMed ID: 17557328 [TBL] [Abstract][Full Text] [Related]
13. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity. Stokes SS; Huynh H; Gowravaram M; Albert R; Cavero-Tomas M; Chen B; Harang J; Loch JT; Lu M; Mullen GB; Zhao S; Liu CF; Mills SD Bioorg Med Chem Lett; 2011 Aug; 21(15):4556-60. PubMed ID: 21719282 [TBL] [Abstract][Full Text] [Related]
14. Structure based identification of first-in-class fragment inhibitors that target the NMN pocket of M. tuberculosis NAD Shukla A; Afsar M; Kumar N; Kumar S; Ramachandran R J Struct Biol; 2021 Mar; 213(1):107655. PubMed ID: 33197566 [TBL] [Abstract][Full Text] [Related]
15. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA). Zhu H; Shuman S J Biol Chem; 2005 Apr; 280(13):12137-44. PubMed ID: 15671015 [TBL] [Abstract][Full Text] [Related]
16. NAD(+)-dependent DNA ligase: a novel target waiting for the right inhibitor. Dwivedi N; Dube D; Pandey J; Singh B; Kukshal V; Ramachandran R; Tripathi RP Med Res Rev; 2008 Jul; 28(4):545-68. PubMed ID: 18080330 [TBL] [Abstract][Full Text] [Related]
17. Structure of the adenylation domain of an NAD+-dependent DNA ligase. Singleton MR; Håkansson K; Timson DJ; Wigley DB Structure; 1999 Jan; 7(1):35-42. PubMed ID: 10368271 [TBL] [Abstract][Full Text] [Related]
18. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Nandakumar J; Nair PA; Shuman S Mol Cell; 2007 Apr; 26(2):257-71. PubMed ID: 17466627 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Korycka-Machala M; Rychta E; Brzostek A; Sayer HR; Rumijowska-Galewicz A; Bowater RP; Dziadek J Antimicrob Agents Chemother; 2007 Aug; 51(8):2888-97. PubMed ID: 17548501 [TBL] [Abstract][Full Text] [Related]
20. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD Unciuleac MC; Goldgur Y; Shuman S Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2592-2597. PubMed ID: 28223499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]