BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20443059)

  • 1. Image registration demonstrates the growth plate has a variable affect on vertebral strain.
    Hardisty MR; Akens M; Yee AJ; Whyne CM
    Ann Biomed Eng; 2010 Sep; 38(9):2948-55. PubMed ID: 20443059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive evaluation of the effects of combined bisphosphonate and photodynamic therapy on bone strain in metastatic vertebrae using image registration.
    Hojjat SP; Won E; Hardisty MR; Akens MK; Wise-Milestone LM; Whyne CM
    Ann Biomed Eng; 2011 Nov; 39(11):2816-22. PubMed ID: 21818534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the effect of osteolytic metastases on bone strain within whole vertebrae using image registration.
    Hardisty MR; Akens MK; Hojjat SP; Yee A; Whyne CM
    J Orthop Res; 2012 Jul; 30(7):1032-9. PubMed ID: 22213180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae.
    Rizza R; Liu X
    J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can micro-imaging based analysis methods quantify structural integrity of rat vertebrae with and without metastatic involvement?
    Hojjat SP; Beek M; Akens MK; Whyne CM
    J Biomech; 2012 Sep; 45(14):2342-8. PubMed ID: 22858318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension.
    Gaitanis IN; Carandang G; Phillips FM; Magovern B; Ghanayem AJ; Voronov LI; Havey RM; Zindrick MR; Hadjipavlou AG; Patwardhan AG
    Spine J; 2005; 5(1):45-54. PubMed ID: 15653084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. μFE models can represent microdamaged regions of healthy and metastatically involved whole vertebrae identified through histology and contrast enhanced μCT imaging.
    Choudhari C; Chan K; Akens MK; Whyne CM
    J Biomech; 2016 May; 49(7):1103-1110. PubMed ID: 26947031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-uniform strain distribution within rat cartilaginous growth plate under uniaxial compression.
    Villemure I; Cloutier L; Matyas JR; Duncan NA
    J Biomech; 2007; 40(1):149-56. PubMed ID: 16378613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth plate chondrocyte enlargement modulated by mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    Stud Health Technol Inform; 2002; 88():378-81. PubMed ID: 15456065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain distribution in the lumbar vertebrae under different loading configurations.
    Cristofolini L; Brandolini N; Danesi V; Juszczyk MM; Erani P; Viceconti M
    Spine J; 2013 Oct; 13(10):1281-92. PubMed ID: 23958297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.
    Kayanja MM; Togawa D; Lieberman IH
    Spine J; 2005; 5(1):55-63. PubMed ID: 15653085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I
    Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-euthanasia micro-computed tomography-based strain analysis is able to represent quasi-static in vivo behavior of whole vertebrae.
    Choudhari C; Herblum R; Akens MK; Moore S; Hardisty M; Whyne CM
    Proc Inst Mech Eng H; 2016 Sep; 230(9):900-904. PubMed ID: 27422827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Asymmetric Tension on Biomechanics and Metabolism of Vertebral Epiphyseal Plate in a Rodent Model of Scoliosis.
    Li QY; Zhong GB; Liu ZD; Lao LF
    Orthop Surg; 2017 Aug; 9(3):311-318. PubMed ID: 28960815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    J Bone Joint Surg Am; 2002 Oct; 84(10):1842-8. PubMed ID: 12377917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static versus dynamic loading in the mechanical modulation of vertebral growth.
    Akyuz E; Braun JT; Brown NA; Bachus KN
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E952-8. PubMed ID: 17139211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical and biological aspects of defect treatment in fractures using helical plates.
    Perren SM; Regazzoni P; Fernandez AA
    Acta Chir Orthop Traumatol Cech; 2014; 81(4):267-71. PubMed ID: 25137496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microstructural tensile properties and biochemical composition of the bovine distal femoral growth plate.
    Cohen B; Chorney GS; Phillips DP; Dick HM; Buckwalter JA; Ratcliffe A; Mow VC
    J Orthop Res; 1992 Mar; 10(2):263-75. PubMed ID: 1740744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.
    Kaviani R; Londono I; Parent S; Moldovan F; Villemure I
    Biomech Model Mechanobiol; 2016 Aug; 15(4):933-46. PubMed ID: 26452368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.