These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 20443576)
1. Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. Wang XL; Han WQ; Chen J; Graetz J ACS Appl Mater Interfaces; 2010 May; 2(5):1548-51. PubMed ID: 20443576 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. Qiu MC; Yang LW; Qi X; Li J; Zhong JX ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626 [TBL] [Abstract][Full Text] [Related]
3. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Shaju KM; Jiao F; Débart A; Bruce PG Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496 [TBL] [Abstract][Full Text] [Related]
4. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
5. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Wang XL; Han WQ ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292 [TBL] [Abstract][Full Text] [Related]
6. Ultrasound-assisted synthesis of Li-rich mesoporous LiMn2O4 nanospheres for enhancing the electrochemical performance in Li-ion secondary batteries. Kim JM; Lee G; Kim BH; Huh YS; Lee GW; Kim HJ Ultrason Sonochem; 2012 May; 19(3):627-31. PubMed ID: 22067553 [TBL] [Abstract][Full Text] [Related]
7. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185 [TBL] [Abstract][Full Text] [Related]
8. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries. Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097 [TBL] [Abstract][Full Text] [Related]
9. Si/Ge double-layered nanotube array as a lithium ion battery anode. Song T; Cheng H; Choi H; Lee JH; Han H; Lee DH; Yoo DS; Kwon MS; Choi JM; Doo SG; Chang H; Xiao J; Huang Y; Park WI; Chung YC; Kim H; Rogers JA; Paik U ACS Nano; 2012 Jan; 6(1):303-9. PubMed ID: 22142021 [TBL] [Abstract][Full Text] [Related]
10. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries. Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898 [TBL] [Abstract][Full Text] [Related]
11. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. Sun YK; Myung ST; Kim MH; Prakash J; Amine K J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775 [TBL] [Abstract][Full Text] [Related]
13. High-performance lithium battery anodes using silicon nanowires. Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447 [TBL] [Abstract][Full Text] [Related]
15. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Wang Z; Su F; Madhavi S; Lou XW Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653 [TBL] [Abstract][Full Text] [Related]
16. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878 [TBL] [Abstract][Full Text] [Related]
17. A graphene-amorphous FePO4 hollow nanosphere hybrid as a cathode material for lithium ion batteries. Yin Y; Hu Y; Wu P; Zhang H; Cai C Chem Commun (Camb); 2012 Feb; 48(15):2137-9. PubMed ID: 22245812 [TBL] [Abstract][Full Text] [Related]
18. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. Chen Y; Lu Z; Zhou L; Mai YW; Huang H Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946 [TBL] [Abstract][Full Text] [Related]
19. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries. Zhang Z; Zhang M; Wang Y; Tan Q; Lv X; Zhong Z; Li H; Su F Nanoscale; 2013 Jun; 5(12):5384-9. PubMed ID: 23652614 [TBL] [Abstract][Full Text] [Related]
20. Nanocrystal-constructed mesoporous single-crystalline Co₃O₄ nanobelts with superior rate capability for advanced lithium-ion batteries. Huang H; Zhu W; Tao X; Xia Y; Yu Z; Fang J; Gan Y; Zhang W ACS Appl Mater Interfaces; 2012 Nov; 4(11):5974-80. PubMed ID: 23054348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]