BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 20443577)

  • 1. Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds.
    Marelli B; Ghezzi CE; Barralet JE; Boccaccini AR; Nazhat SN
    Biomacromolecules; 2010 Jun; 11(6):1470-9. PubMed ID: 20443577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds.
    Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM
    Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds.
    San Miguel B; Kriauciunas R; Tosatti S; Ehrbar M; Ghayor C; Textor M; Weber FE
    J Biomed Mater Res A; 2010 Sep; 94(4):1023-33. PubMed ID: 20694969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite.
    Thomas V; Dean DR; Jose MV; Mathew B; Chowdhury S; Vohra YK
    Biomacromolecules; 2007 Feb; 8(2):631-7. PubMed ID: 17256900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering.
    Chen QZ; Thompson ID; Boccaccini AR
    Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro.
    Chen QZ; Efthymiou A; Salih V; Boccaccini AR
    J Biomed Mater Res A; 2008 Mar; 84(4):1049-60. PubMed ID: 17685403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function.
    Marelli B; Ghezzi CE; Mohn D; Stark WJ; Barralet JE; Boccaccini AR; Nazhat SN
    Biomaterials; 2011 Dec; 32(34):8915-26. PubMed ID: 21889796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations.
    Shah Mohammadi M; Ahmed I; Marelli B; Rudd C; Bureau MN; Nazhat SN
    Acta Biomater; 2010 Aug; 6(8):3157-68. PubMed ID: 20206722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering.
    Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR
    Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).
    Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V
    J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.
    Fu Q; Rahaman MN; Fu H; Liu X
    J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering.
    García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR
    Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection.
    Miri AK; Muja N; Kamranpour NO; Lepry WC; Boccaccini AR; Clarke SA; Nazhat SN
    Biomaterials; 2016 Apr; 85():128-41. PubMed ID: 26871889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive.
    Wu SC; Hsu HC; Hsiao SH; Ho WF
    J Mater Sci Mater Med; 2009 Jun; 20(6):1229-36. PubMed ID: 19160020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.