BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 20443599)

  • 1. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.
    Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M
    J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting.
    Gonçalves RH; Lima BH; Leite ER
    J Am Chem Soc; 2011 Apr; 133(15):6012-9. PubMed ID: 21443221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scalable colloidal approach to prepare hematite films for efficient solar water splitting.
    Zong X; Thaweesak S; Xu H; Xing Z; Zou J; Lu GM; Wang L
    Phys Chem Chem Phys; 2013 Aug; 15(29):12314-21. PubMed ID: 23778329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.
    Mao A; Park NG; Han GY; Park JH
    Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanonet-based hematite heteronanostructures for efficient solar water splitting.
    Lin Y; Zhou S; Sheehan SW; Wang D
    J Am Chem Soc; 2011 Mar; 133(8):2398-401. PubMed ID: 21306153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies.
    Li Y; Guijarro N; Zhang X; Prévot MS; Jeanbourquin XA; Sivula K; Chen H; Li Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16999-7007. PubMed ID: 26186065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.
    Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R
    ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
    Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS
    Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation.
    Engel J; Tuller HL
    Phys Chem Chem Phys; 2014 Jun; 16(23):11374-80. PubMed ID: 24797819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity.
    Bora DK; Braun A; Erni R; Müller U; Döbeli M; Constable EC
    Phys Chem Chem Phys; 2013 Aug; 15(30):12648-59. PubMed ID: 23788236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.